Exome Sequencing of Normal and Isogenic Transformed Human Colonic Epithelial Cells (HCECs) Reveals Novel Genes Potentially Involved in the Early Stages of Colorectal Tumorigenesis

BMC Genomics. 2015;16 Suppl 1(Suppl 1):S8. doi: 10.1186/1471-2164-16-S1-S8. Epub 2015 Jan 15.

Abstract

Background: We have generated a series of isogenically derived immortalized human colonic epithelial cell (HCEC 1CT and HCEC 2CT) lines, including parental un-immortalized normal cell strains. The CDK4 and hTERT immortalized colonic epithelial cell line (HCEC 1CT) is initially karyotypically normal diploid and expresses a series of epithelial cell markers including stem cell markers. Under stressful tissue culture conditions, a spontaneous aneuploidy event occurred in the HCEC 1CT line, resulting in a single chromosomal change leading to a stable trisomy 7 cell line (1CT7). Trisomy 7 occurs in about 40% of all benign human adenomas (polyps) and thus this specific chromosomal change in diploid HCEC 1CT cells appears to be non random. In addition, we have partially transformed the HCEC 1CT line by introducing stable knockdown of wild type APC and TP53, and ectopically introducing a mutant Krasv12 and a mutant version of APC (A1309), all commonly found mutations in colorectal cancer (CRC).

Methods: Whole exome sequencing and bioinformatic analyses were performed to comprehensively examine the genetic background of these isogenic cell lines.

Results: Exome sequencing of these experimentally progressed cell lines recapitulates a list of genes previously reported to be involved in CRC tumorigenesis. In addition, sequencing revealed a collection of novel genes specifically detected in 1CT7 and A1309 cells but not normal diploid 1CT cells.

Conclusion: This study demonstrates the utility of using isogenic experimentally derived HCEC lines as a model to recapitulate CRC initiation and progression. Exome sequencing reveals a collection of novel genes that may play important roles in CRC tumorigenesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Base Sequence
  • Carcinogenesis / genetics*
  • Cell Line, Tumor
  • Cell Transformation, Neoplastic / genetics*
  • Cell Transformation, Neoplastic / pathology
  • Colon / pathology*
  • Colorectal Neoplasms / genetics*
  • Colorectal Neoplasms / pathology
  • Epithelial Cells / metabolism*
  • Epithelial Cells / pathology
  • Exome / genetics*
  • Genetic Association Studies
  • Humans
  • Molecular Sequence Data
  • Mutation / genetics
  • Polymorphism, Single Nucleotide / genetics
  • Reproducibility of Results
  • Sequence Analysis, DNA*