Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 May 4;17(1):62.
doi: 10.1186/s13058-015-0571-6.

Omega-3 Fatty Acids for Breast Cancer Prevention and Survivorship

Affiliations
Free PMC article
Review

Omega-3 Fatty Acids for Breast Cancer Prevention and Survivorship

Carol J Fabian et al. Breast Cancer Res. .
Free PMC article

Abstract

Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case-control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship.

Figures

Figure 1
Figure 1
Dietary sources and general metabolic pathway for omega-6 and omega-3 polyunsaturated fatty acids, leading to proinflammatory and anti-inflammatory products respectively.
Figure 2
Figure 2
Metabolic pathways for omega-6 and omega-3 fatty acids that result in a variety of inflammation mediators and cell function effectors. Proinflammatory (red) and anti-inflammatory or less inflammatory (green) molecules are denoted within ellipses. Other molecules are indicated that are likely to promote (red) or repress (green) neoplastic processes. Cyclooxygenase (blue) and lipoxygenase (yellow) enzymatic processes are indicated. AA, arachidonic acid; ALA, alpha linolenic acid; COX, cyclooxygenase; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; HDHA, hydroxydocosahexaenoic acid; HEPE, hydroxyeicosapentaenoic acid; HETE, hydroxyeicosatetraenoic acid; HODE, hydroxyoctadecadienoic acid; HPETE, hydroperoxyeicosatetraenoic acid; LA, linoleic acid; LOX, lipoxygenase; LT, leukotriene; LX, lipoxin; HODE, hydroxyoctadecadienoic acid; HX, hepoxilin; MaR, maresin; PD1, protectin D1; PG, prostaglandin; Rv, resolvin; TX, thromboxane.

Similar articles

See all similar articles

Cited by 46 articles

See all "Cited by" articles

References

    1. Howe LR, Subbaramaiah K, Hudis CA, Dannenberg AJ. Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res. 2013;19:6074–83. doi: 10.1158/1078-0432.CCR-12-2603. - DOI - PMC - PubMed
    1. Baumgarten SC, Minireview FJ. Inflammation: an instigator of more aggressive estrogen receptor (ER) positive breast cancers. Mol Endocrinol. 2012;26:360–71. doi: 10.1210/me.2011-1302. - DOI - PMC - PubMed
    1. Hussein MR, Hassan HI. Analysis of the mononuclear inflammatory cell infiltrate in the normal breast, benign proliferative breast disease, in situ and infiltrating ductal breast carcinomas: preliminary observations. J Clin Pathol. 2006;59:972–7. doi: 10.1136/jcp.2005.031252. - DOI - PMC - PubMed
    1. Pollard J. Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol. 2008;84:623–30. doi: 10.1189/jlb.1107762. - DOI - PMC - PubMed
    1. McDermott RS, Beuvon F, Pauly M, Pallud C, Vincent-Salomon A, Mosseri V, et al. Tumor antigens and antigen-presenting capacity in breast cancer. Pathobiology. 2002;70:324–9. doi: 10.1159/000071272. - DOI - PubMed

MeSH terms

Feedback