Parameter estimation of neuron models using in-vitro and in-vivo electrophysiological data
- PMID: 25941485
- PMCID: PMC4403314
- DOI: 10.3389/fninf.2015.00010
Parameter estimation of neuron models using in-vitro and in-vivo electrophysiological data
Abstract
Spiking neuron models can accurately predict the response of neurons to somatically injected currents if the model parameters are carefully tuned. Predicting the response of in-vivo neurons responding to natural stimuli presents a far more challenging modeling problem. In this study, an algorithm is presented for parameter estimation of spiking neuron models. The algorithm is a hybrid evolutionary algorithm which uses a spike train metric as a fitness function. We apply this to parameter discovery in modeling two experimental data sets with spiking neurons; in-vitro current injection responses from a regular spiking pyramidal neuron are modeled using spiking neurons and in-vivo extracellular auditory data is modeled using a two stage model consisting of a stimulus filter and spiking neuron model.
Keywords: auditory neurons; evolutionary algorithms; parameter estimation; spike train metrics; spiking neurons.
Figures
Similar articles
-
Parameter Estimation of Two Spiking Neuron Models With Meta-Heuristic Optimization Algorithms.Front Neuroinform. 2022 Feb 16;16:771730. doi: 10.3389/fninf.2022.771730. eCollection 2022. Front Neuroinform. 2022. PMID: 35250525 Free PMC article.
-
Automatic fitting of spiking neuron models to electrophysiological recordings.Front Neuroinform. 2010 Mar 5;4:2. doi: 10.3389/neuro.11.002.2010. eCollection 2010. Front Neuroinform. 2010. PMID: 20224819 Free PMC article.
-
Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions.J Neurosci Methods. 2017 Feb 15;278:46-56. doi: 10.1016/j.jneumeth.2016.12.018. Epub 2017 Jan 4. J Neurosci Methods. 2017. PMID: 28062244
-
Fitting neuron models to spike trains.Front Neurosci. 2011 Feb 23;5:9. doi: 10.3389/fnins.2011.00009. eCollection 2011. Front Neurosci. 2011. PMID: 21415925 Free PMC article.
-
Supervised learning in spiking neural networks: A review of algorithms and evaluations.Neural Netw. 2020 May;125:258-280. doi: 10.1016/j.neunet.2020.02.011. Epub 2020 Feb 25. Neural Netw. 2020. PMID: 32146356 Review.
Cited by
-
Parameter Estimation of Two Spiking Neuron Models With Meta-Heuristic Optimization Algorithms.Front Neuroinform. 2022 Feb 16;16:771730. doi: 10.3389/fninf.2022.771730. eCollection 2022. Front Neuroinform. 2022. PMID: 35250525 Free PMC article.
-
Evolving Simple Models of Diverse Intrinsic Dynamics in Hippocampal Neuron Types.Front Neuroinform. 2018 Mar 13;12:8. doi: 10.3389/fninf.2018.00008. eCollection 2018. Front Neuroinform. 2018. PMID: 29593519 Free PMC article.
-
A Metric for Evaluating Neural Input Representation in Supervised Learning Networks.Front Neurosci. 2018 Dec 14;12:913. doi: 10.3389/fnins.2018.00913. eCollection 2018. Front Neurosci. 2018. PMID: 30618549 Free PMC article.
-
Biophysically grounded mean-field models of neural populations under electrical stimulation.PLoS Comput Biol. 2020 Apr 23;16(4):e1007822. doi: 10.1371/journal.pcbi.1007822. eCollection 2020 Apr. PLoS Comput Biol. 2020. PMID: 32324734 Free PMC article.
-
Biophysically interpretable inference of single neuron dynamics.J Comput Neurosci. 2019 Aug;47(1):61-76. doi: 10.1007/s10827-019-00723-7. Epub 2019 Aug 29. J Comput Neurosci. 2019. PMID: 31468241
References
-
- Aertsen A., Johannesma P. (1981). The spectro-temporal receptive field. Biol. Cybern. 42, 133–143. - PubMed
-
- Bower J. M., Beeman D. (1998). The Book of GENESIS : Exploring Realistic Neural Models with the GEneral NEural SImulation System. Santa Clara, CA: TELOS.
LinkOut - more resources
Full Text Sources
Other Literature Sources
