A paradigm shift in pharmacokinetic-pharmacodynamic (PKPD) modeling: rule of thumb for estimating free drug level in tissue compared with plasma to guide drug design

J Pharm Sci. 2015 Jul;104(7):2359-68. doi: 10.1002/jps.24468. Epub 2015 May 5.


A basic assumption in pharmacokinetics-pharmacodynamics research is that the free drug concentration is similar in plasma and tissue, and, hence, in vitro plasma data can be used to estimate the in vivo condition in tissue. However, in a companion manuscript, it has been demonstrated that this assumption is violated for the ionized drugs. Nonetheless, these observations focus on in vitro static environments and do not challenge data with an in vivo dynamic system. Therefore, an extension from an in vitro to an in vivo system becomes the necessary next step. The objective of this study was to perform theoretical simulations of the free drug concentration in tissue and plasma by using a physiologically based pharmacokinetics (PBPK) model reproducing the in vivo conditions in human. Therefore, the effects of drug ionization, lipophilicity, and clearance have been taken into account in a dynamic system. This modeling exercise was performed as a proof of concept to demonstrate that free drug concentration in tissue and plasma may also differ in a dynamic system for passively permeable drugs that are ionized at the physiological pH. The PBPK model simulations indicated that free drug concentrations in tissue cells and plasma significantly differ for the ionized drugs because of the pH gradient effect between cells and interstitial space. Hence, a rule of thumb for potentially performing more accurate PBPK/PD modeling is suggested, which states that the free drug concentration in tissue and plasma will differ for the ionizable drugs in contrast to the neutral drugs. In addition to the pH gradient effect for the ionizable drugs, lipophilicity and clearance effects will increase or decrease the free drug concentration in tissue and plasma for each class of drugs; thus, higher will be the drug lipophilicity and clearance, lower would be the free drug concentration in plasma, and, hence, in tissue, in a dynamic in vivo system. Therefore, only considering the value of free fraction in plasma derived from a static in vitro environment might be biased to guide drug design (the old paradigm), and, hence, it is recommended to use a PBPK model to reproduce more accurately the in vivo condition in tissue (the new paradigm). This newly developed approach can be used to predict free drug concentration in diverse tissue compartments for small molecules in toxicology and pharmacology studies, which can be leveraged to optimize the pharmacokinetics drivers of tissue distribution based upon physicochemical and physiological input parameters in an attempt to optimize free drug level in tissue. Overall, this present study provides guidance on the application of plasma and tissue concentration information in PBPK/PD research in preclinical and clinical studies, which is in accordance with the recent literature.

Keywords: ADME; PBPK; PKPD; disposition; distribution; partition coefficients; pharmacodynamics; pharmacokinetics; unbound fraction.

MeSH terms

  • Computer Simulation
  • Drug Design
  • Humans
  • Models, Biological
  • Pharmaceutical Preparations / administration & dosage*
  • Pharmaceutical Preparations / metabolism*
  • Plasma / metabolism*
  • Tissue Distribution / physiology


  • Pharmaceutical Preparations