Translational value of mouse models in oncology drug development
- PMID: 25951530
- DOI: 10.1038/nm.3853
Translational value of mouse models in oncology drug development
Abstract
Much has been written about the advantages and disadvantages of various oncology model systems, with the overall finding that these models lack the predictive power required to translate preclinical efficacy into clinical activity. Despite assertions that some preclinical model systems are superior to others, no single model can suffice to inform preclinical target validation and molecule selection. This perspective provides a balanced albeit critical view of these claims of superiority and outlines a framework for the proper use of existing preclinical models for drug testing and discovery. We also highlight gaps in oncology mouse models and discuss general and pervasive model-independent shortcomings in preclinical oncology work, and we propose ways to address these issues.
Similar articles
-
Overview of human primary tumorgraft models: comparisons with traditional oncology preclinical models and the clinical relevance and utility of primary tumorgrafts in basic and translational oncology research.Curr Protoc Pharmacol. 2012 Dec;Chapter 14:Unit 14.22. doi: 10.1002/0471141755.ph1422s59. Curr Protoc Pharmacol. 2012. PMID: 23258598 Free PMC article.
-
Of Mice, Dogs, Pigs, and Men: Choosing the Appropriate Model for Immuno-Oncology Research.ILAR J. 2018 Dec 31;59(3):247-262. doi: 10.1093/ilar/ily014. ILAR J. 2018. PMID: 30476148
-
Humanized Mice for the Study of Immuno-Oncology.Trends Immunol. 2018 Sep;39(9):748-763. doi: 10.1016/j.it.2018.07.001. Epub 2018 Aug 2. Trends Immunol. 2018. PMID: 30077656 Review.
-
Overview of genetically engineered mouse models of colorectal carcinoma to enable translational biology and drug development.Curr Protoc Pharmacol. 2014 Jun 16;65:14.29.1-10. doi: 10.1002/0471141755.ph1429s65. Curr Protoc Pharmacol. 2014. PMID: 24934606
-
Animal models of human disease: challenges in enabling translation.Biochem Pharmacol. 2014 Jan 1;87(1):162-71. doi: 10.1016/j.bcp.2013.08.006. Epub 2013 Aug 14. Biochem Pharmacol. 2014. PMID: 23954708 Review.
Cited by
-
Direct visualization of emergent metastatic features within an ex vivo model of the tumor microenvironment.Life Sci Alliance. 2024 Oct 17;8(1):e202403053. doi: 10.26508/lsa.202403053. Print 2025 Jan. Life Sci Alliance. 2024. PMID: 39419548 Free PMC article.
-
Drug Discovery via Human-Derived Stem Cell Organoids.Front Pharmacol. 2016 Sep 22;7:334. doi: 10.3389/fphar.2016.00334. eCollection 2016. Front Pharmacol. 2016. PMID: 27713700 Free PMC article. Review.
-
Bioprofiling TS/A Murine Mammary Cancer for a Functional Precision Experimental Model.Cancers (Basel). 2019 Nov 27;11(12):1889. doi: 10.3390/cancers11121889. Cancers (Basel). 2019. PMID: 31783695 Free PMC article. Review.
-
Human cancer evolution in the context of a human immune system in mice.Mol Oncol. 2018 Oct;12(10):1797-1810. doi: 10.1002/1878-0261.12374. Epub 2018 Sep 3. Mol Oncol. 2018. PMID: 30120895 Free PMC article.
-
Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery.Br J Cancer. 2020 Mar;122(6):735-744. doi: 10.1038/s41416-019-0672-6. Epub 2020 Jan 2. Br J Cancer. 2020. PMID: 31894140 Free PMC article. Review.
References
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
