Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Aug;54(3):305-16.
doi: 10.1007/s00411-015-0601-x. Epub 2015 May 9.

Modeling Radiation-Induced Cell Death: Role of Different Levels of DNA Damage Clustering

Affiliations

Modeling Radiation-Induced Cell Death: Role of Different Levels of DNA Damage Clustering

M P Carante et al. Radiat Environ Biophys. .

Abstract

Some open questions on the mechanisms underlying radiation-induced cell death were addressed by a biophysical model, focusing on DNA damage clustering and its consequences. DNA "cluster lesions" (CLs) were assumed to produce independent chromosome fragments that, if created within a micrometer-scale threshold distance (d), can lead to chromosome aberrations following mis-rejoining; in turn, certain aberrations (dicentrics, rings and large deletions) were assumed to lead to clonogenic cell death. The CL yield and d were the only adjustable parameters. The model, implemented as a Monte Carlo code called BIophysical ANalysis of Cell death and chromosome Aberrations (BIANCA), provided simulated survival curves that were directly compared with experimental data on human and hamster cells exposed to photons, protons, α-particles and heavier ions including carbon and iron. d = 5 μm, independent of radiation quality, and CL yields in the range ~2-20 CLs Gy(-1) cell(-1), depending on particle type and energy, led to good agreement between simulations and data. This supports the hypothesis of a pivotal role of DNA cluster damage at sub-micrometric scale, modulated by chromosome fragment mis-rejoining at micrometric scale. To investigate the features of such critical damage, the CL yields were compared with experimental or theoretical yields of DNA fragments of different sizes, focusing on the base-pair scale (related to the so-called local clustering), the kbp scale ("regional clustering") and the Mbp scale, corresponding to chromatin loops. Interestingly, the CL yields showed better agreement with kbp fragments rather than bp fragments or Mbp fragments; this suggests that also regional clustering, in addition to other clustering levels, may play an important role, possibly due to its relationship with nucleosome organization in the chromatin fiber.

Similar articles

See all similar articles

Cited by 4 articles

References

    1. Int J Radiat Biol. 1989 Apr;55(4):513-29 - PubMed
    1. Int J Radiat Biol. 1989 Jul;56(1):1-19 - PubMed
    1. Int J Radiat Biol. 1994 Jan;65(1):7-17 - PubMed
    1. Radiat Res. 2005 Oct;164(4 Pt 2):567-70 - PubMed
    1. Adv Space Res. 2003;31(1):27-34 - PubMed

Publication types

LinkOut - more resources

Feedback