Monodisperse Emulsion Drop Microenvironments for Bacterial Biofilm Growth
- PMID: 25959709
- DOI: 10.1002/smll.201403125
Monodisperse Emulsion Drop Microenvironments for Bacterial Biofilm Growth
Abstract
In this work, microfluidic technology is used to rapidly create hundreds of thousands of monodisperse double and triple emulsion drops that serve as 3D microenvironments for the containment and growth of bacterial biofilms. The size of these drops, with diameters from tens to hundreds of micrometers, makes them amenable to rapid manipulation and analysis. This is demonstrated by using microscopy to visualize cellular differentiation of Bacillus subtilis biofilm communities within each drop and the bacterial biofilm microstructure. Biofilm growth is explored upon specific interfaces in double and triple emulsions and upon negative and positive radii of curvature. Biofilm attachment of matrix and flagella mutants is studied as well as biofilms of Pseudomonas aeruginosa. This is the first demonstration of biofilms grown in microscale emulsion drops, which serve as both templates and containers for biofilm growth and attachment. These microenvironments have the potential to transform existing high-throughput screening methods for bacterial biofilms.
Keywords: biofilms; emulsions; high-throughput; microenvironments; microfluidics.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Dynamic Sessile-Droplet Habitats for Controllable Cultivation of Bacterial Biofilm.Small. 2018 May;14(22):e1800658. doi: 10.1002/smll.201800658. Epub 2018 May 2. Small. 2018. PMID: 29717806
-
Integrated microfluidic system with simultaneous emulsion generation and concentration.J Colloid Interface Sci. 2016 Mar 15;466:162-7. doi: 10.1016/j.jcis.2015.12.032. Epub 2015 Dec 18. J Colloid Interface Sci. 2016. PMID: 26722797
-
Inhibition of biofilm formation by D-tyrosine: Effect of bacterial type and D-tyrosine concentration.Water Res. 2016 Apr 1;92:173-9. doi: 10.1016/j.watres.2016.01.037. Epub 2016 Jan 26. Water Res. 2016. PMID: 26854605
-
New mechanistic insights into the motile-to-sessile switch in various bacteria with particular emphasis on Bacillus subtilis and Pseudomonas aeruginosa: a review.Biofouling. 2017 Apr;33(4):306-326. doi: 10.1080/08927014.2017.1304541. Epub 2017 Mar 28. Biofouling. 2017. PMID: 28347177 Review.
-
Division of Labor in Biofilms: the Ecology of Cell Differentiation.Microbiol Spectr. 2015 Apr;3(2):MB-0002-2014. doi: 10.1128/microbiolspec.MB-0002-2014. Microbiol Spectr. 2015. PMID: 26104716 Review.
Cited by
-
High throughput microencapsulation of Bacillus subtilis in semi-permeable biodegradable polymersomes for selenium remediation.Appl Microbiol Biotechnol. 2017 Jan;101(1):455-464. doi: 10.1007/s00253-016-7896-7. Epub 2016 Oct 15. Appl Microbiol Biotechnol. 2017. PMID: 27744558 Free PMC article.
-
Generation of Ultra-Thin-Shell Microcapsules Using Osmolarity-Controlled Swelling Method.Micromachines (Basel). 2020 Apr 23;11(4):444. doi: 10.3390/mi11040444. Micromachines (Basel). 2020. PMID: 32340189 Free PMC article.
-
Application of Microfluidics in Experimental Ecology: The Importance of Being Spatial.Front Microbiol. 2018 Mar 20;9:496. doi: 10.3389/fmicb.2018.00496. eCollection 2018. Front Microbiol. 2018. PMID: 29616009 Free PMC article. Review.
-
Reaching unreachables: Obstacles and successes of microbial cultivation and their reasons.Front Microbiol. 2023 Mar 7;14:1089630. doi: 10.3389/fmicb.2023.1089630. eCollection 2023. Front Microbiol. 2023. PMID: 36960281 Free PMC article. Review.
-
Flexible control of cellular encapsulation, permeability, and release in a droplet-templated bifunctional copolymer scaffold.Biomicrofluidics. 2016 Dec 8;10(6):064115. doi: 10.1063/1.4972107. eCollection 2016 Nov. Biomicrofluidics. 2016. PMID: 27990217 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
