The influence of stabilizers on the production of gold nanoparticles by direct current atmospheric pressure glow microdischarge generated in contact with liquid flowing cathode

J Nanopart Res. 2015;17(4):185. doi: 10.1007/s11051-015-2992-7. Epub 2015 Apr 17.

Abstract

Gold nanoparticles (Au NPs) were prepared by direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between a miniature argon flow microjet and a flowing liquid cathode. The applied discharge system was operated in a continuous flow liquid mode. The influence of various stabilizers added to the solution of the liquid cathode, i.e., gelatin (GEL), polyvinylpyrrolidone (PVP), or polyvinyl alcohol (PVA), as well as the concentration of the Au precursor (chloroauric acid, HAuCl4) in the solution on the production growth of Au NPs was investigated. Changes in the intensity of the localized surface plasmon resonance (LSPR) band in UV/Vis absorption spectra of solutions treated by dc-μAPGD and their color were observed. The position and the intensity of the LSPR band indicated that relatively small nanoparticles were formed in solutions containing GEL as a capping agent. In these conditions, the maximum of the absorption LSPR band was at 531, 534, and 535 nm, respectively, for 50, 100, and 200 mg L-1 of Au. Additionally, scanning electron microscopy (SEM) and dynamic light scattering (DLS) were used to analyze the structure and the morphology of obtained Au NPs. The shape of Au NPs was spherical and uniform. Their mean size was ca. 27, 73, and 92 nm, while the polydispersity index was 0.296, 0.348, and 0.456 for Au present in the solution of the flowing liquid cathode at a concentration of 50, 100, and 200 mg L-1, respectively. The production rate of synthesized Au NPs depended on the precursor concentration with mean values of 2.9, 3.5, and 5.7 mg h-1, respectively.

Keywords: Atmospheric pressure glow discharge; Gold nanoparticles; Localized surface plasmon resonance; UV/Vis absorption spectroscopy.