Geographic range size is predicted by plant mating system

Ecol Lett. 2015 Jul;18(7):706-13. doi: 10.1111/ele.12449. Epub 2015 May 18.

Abstract

Species' geographic ranges vary enormously, and even closest relatives may differ in range size by several orders of magnitude. With data from hundreds of species spanning 20 genera in 15 families, we show that plant species that autonomously reproduce via self-pollination consistently have larger geographic ranges than their close relatives that generally require two parents for reproduction. Further analyses strongly implicate autonomous self-fertilisation in causing this relationship, as it is not driven by traits such as polyploidy or annual life history whose evolution is sometimes correlated with selfing. Furthermore, we find that selfers occur at higher maximum latitudes and that disparity in range size between selfers and outcrossers increases with time since their evolutionary divergence. Together, these results show that autonomous reproduction--a critical biological trait that eliminates mate limitation and thus potentially increases the probability of establishment--increases range size.

Keywords: Baker's Law; outcrossing; phylogeny; range size; selfing.

MeSH terms

  • Biological Evolution*
  • Geography
  • Linear Models
  • Phylogeny
  • Plant Dispersal*
  • Plant Physiological Phenomena*
  • Plants / genetics*
  • Ploidies
  • Pollination*
  • Reproduction
  • Self-Fertilization*