First effects of rising amyloid-β in transgenic mouse brain: synaptic transmission and gene expression

Brain. 2015 Jul;138(Pt 7):1992-2004. doi: 10.1093/brain/awv127. Epub 2015 May 16.


Detecting and treating Alzheimer's disease, before cognitive deficits occur, has become the health challenge of our time. The earliest known event in Alzheimer's disease is rising amyloid-β. Previous studies have suggested that effects on synaptic transmission may precede plaque deposition. Here we report how relative levels of different soluble amyloid-β peptides in hippocampus, preceding plaque deposition, relate to synaptic and genomic changes. Immunoprecipitation-mass spectrometry was used to measure the early rise of different amyloid-β peptides in a mouse model of increasing amyloid-β ('TASTPM', transgenic for familial Alzheimer's disease genes APP/PSEN1). In the third postnatal week, several amyloid-β peptides were above the limit of detection, including amyloid-β40, amyloid-β38 and amyloid-β42 with an intensity ratio of 6:3:2, respectively. By 2 months amyloid-β levels had only increased by 50% and although the ratio of the different peptides remained constant, the first changes in synaptic currents, compared to wild-type mice could be detected with patch-clamp recordings. Between 2 and 4 months old, levels of amyloid-β40 rose by ∼7-fold, but amyloid-β42 rose by 25-fold, increasing the amyloid-β42:amyloid-β40 ratio to 1:1. Only at 4 months did plaque deposition become detectable and only in some mice; however, synaptic changes were evident in all hippocampal fields. These changes included increased glutamate release probability (P < 0.001, n = 7-9; consistent with the proposed physiological effect of amyloid-β) and loss of spontaneous action potential-mediated activity in the cornu ammonis 1 (CA1) and dentate gyrus regions of the hippocampus (P < 0.001, n = 7). Hence synaptic changes occur when the amyloid-β levels and amyloid-β42:amyloid-β40 ratio are still low compared to those necessary for plaque deposition. Genome-wide microarray analysis revealed changes in gene expression at 2-4 months including synaptic genes being strongly affected but often showing significant changes only by 4 months. We thus demonstrate that, in a mouse model of rising amyloid-β, the initial deposition of plaques does not occur until several months after the first amyloid-β becomes detectable but coincides with a rapid acceleration in the rise of amyloid-β levels and the amyloid-β42:amyloid-β40 ratio. Prior to acceleration, however, there is already a pronounced synaptic dysfunction, reflected as changes in synaptic transmission and altered gene expression, indicating that restoring synaptic function early in the disease progression may represent the earliest possible target for intervention in the onset of Alzheimer's disease.

Keywords: Alzheimer’s disease; amyloid; gene expression; mouse; synaptic transmission.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / genetics*
  • Alzheimer Disease / pathology*
  • Amyloid beta-Peptides / metabolism*
  • Animals
  • Disease Models, Animal
  • Hippocampus / metabolism
  • Hippocampus / pathology
  • Immunoprecipitation
  • Mass Spectrometry
  • Mice
  • Mice, Transgenic
  • Oligonucleotide Array Sequence Analysis
  • Patch-Clamp Techniques
  • Plaque, Amyloid / genetics
  • Plaque, Amyloid / metabolism
  • Plaque, Amyloid / pathology*
  • Synaptic Transmission / physiology*
  • Transcriptome


  • Amyloid beta-Peptides