Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Oct;208(1):26-38.
doi: 10.1111/nph.13469. Epub 2015 May 20.

Genes and networks regulating root anatomy and architecture

Affiliations
Free article
Review

Genes and networks regulating root anatomy and architecture

Guy Wachsman et al. New Phytol. 2015 Oct.
Free article

Abstract

The root is an excellent model for studying developmental processes that underlie plant anatomy and architecture. Its modular structure, the lack of cell movement and relative accessibility to microscopic visualization facilitate research in a number of areas of plant biology. In this review, we describe several examples that demonstrate how cell type-specific developmental mechanisms determine cell fate and the formation of defined tissues with unique characteristics. In the last 10 yr, advances in genome-wide technologies have led to the sequencing of thousands of plant genomes, transcriptomes and proteomes. In parallel with the development of these high-throughput technologies, biologists have had to establish computational, statistical and bioinformatic tools that can deal with the wealth of data generated by them. These resources provide a foundation for posing more complex questions about molecular interactions, and have led to the discovery of new mechanisms that control phenotypic differences. Here we review several recent studies that shed new light on developmental processes, which are involved in establishing root anatomy and architecture. We highlight the power of combining large-scale experiments with classical techniques to uncover new pathways in root development.

Keywords: Arabidopsis; lateral root; networks; root; root architecture.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources