Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte?
- PMID: 26017773
- PMCID: PMC4603697
- DOI: 10.1038/srep10134
Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte?
Abstract
Algae with secondary plastids of a red algal origin, such as ochrophytes (photosynthetic stramenopiles), are diverse and ecologically important, yet their evolutionary history remains controversial. We sequenced plastid genomes of two ochrophytes, Ochromonas sp. CCMP1393 (Chrysophyceae) and Trachydiscus minutus (Eustigmatophyceae). A shared split of the clpC gene as well as phylogenomic analyses of concatenated protein sequences demonstrated that chrysophytes and eustigmatophytes form a clade, the Limnista, exhibiting an unexpectedly elevated rate of plastid gene evolution. Our analyses also indicate that the root of the ochrophyte phylogeny falls between the recently redefined Khakista and Phaeista assemblages. Taking advantage of the expanded sampling of plastid genome sequences, we revisited the phylogenetic position of the plastid of Vitrella brassicaformis, a member of Alveolata with the least derived plastid genome known for the whole group. The results varied depending on the dataset and phylogenetic method employed, but suggested that the Vitrella plastids emerged from a deep ochrophyte lineage rather than being derived vertically from a hypothetical plastid-bearing common ancestor of alveolates and stramenopiles. Thus, we hypothesize that the plastid in Vitrella, and potentially in other alveolates, may have been acquired by an endosymbiosis of an early ochrophyte.
Conflict of interest statement
The authors declare no competing financial interests.
Figures
Similar articles
-
Chromera velia, endosymbioses and the rhodoplex hypothesis--plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages).Genome Biol Evol. 2014 Mar;6(3):666-84. doi: 10.1093/gbe/evu043. Genome Biol Evol. 2014. PMID: 24572015 Free PMC article.
-
Evolutionary Dynamics of Cryptophyte Plastid Genomes.Genome Biol Evol. 2017 Jul 1;9(7):1859-1872. doi: 10.1093/gbe/evx123. Genome Biol Evol. 2017. PMID: 28854597 Free PMC article.
-
Olisthodiscus represents a new class of Ochrophyta.J Phycol. 2021 Aug;57(4):1094-1118. doi: 10.1111/jpy.13155. Epub 2021 Apr 14. J Phycol. 2021. PMID: 33655496
-
Are Thraustochytrids algae?Fungal Biol. 2017 Oct;121(10):835-840. doi: 10.1016/j.funbio.2017.07.006. Epub 2017 Aug 3. Fungal Biol. 2017. PMID: 28889907 Review.
-
A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.J Plant Res. 2005 Aug;118(4):247-55. doi: 10.1007/s10265-005-0219-1. Epub 2005 Jul 20. J Plant Res. 2005. PMID: 16032387 Review.
Cited by
-
Modular antenna of photosystem I in secondary plastids of red algal origin: a Nannochloropsis oceanica case study.Photosynth Res. 2017 Mar;131(3):255-266. doi: 10.1007/s11120-016-0315-1. Epub 2016 Oct 12. Photosynth Res. 2017. PMID: 27734239
-
The Complete Plastid Genomes of Seven Sargassaceae Species and Their Phylogenetic Analysis.Front Plant Sci. 2021 Nov 5;12:747036. doi: 10.3389/fpls.2021.747036. eCollection 2021. Front Plant Sci. 2021. PMID: 34804089 Free PMC article.
-
Re-analyses of "Algal" Genes Suggest a Complex Evolutionary History of Oomycetes.Front Plant Sci. 2017 Sep 6;8:1540. doi: 10.3389/fpls.2017.01540. eCollection 2017. Front Plant Sci. 2017. PMID: 28932232 Free PMC article.
-
Phylogenomic fingerprinting of tempo and functions of horizontal gene transfer within ochrophytes.Proc Natl Acad Sci U S A. 2021 Jan 26;118(4):e2009974118. doi: 10.1073/pnas.2009974118. Proc Natl Acad Sci U S A. 2021. PMID: 33419955 Free PMC article.
-
Seasonal and Geographical Transitions in Eukaryotic Phytoplankton Community Structure in the Atlantic and Pacific Oceans.Front Microbiol. 2020 Sep 30;11:542372. doi: 10.3389/fmicb.2020.542372. eCollection 2020. Front Microbiol. 2020. PMID: 33101224 Free PMC article.
References
-
- Green B. R. Chloroplast genomes of photosynthetic eukaryotes. Plant J. 66, 34–44 (2011). - PubMed
-
- Keeling P. J. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol. 64, 583–607 (2013). - PubMed
-
- Andersen R. A. Biology and systematics of heterokont and haptophyte algae. Am. J. Bot. 91, 1508–1522 (2004). - PubMed
-
- Yoon H. S., Andersen R. A., Boo S. M. & Bhattacharya D. Stramenopiles. In Eukaryotic Microbes (ed. Schaechter M. ) 373–384 Academic Press2012).
-
- Kai A., Yoshii Y., Nakayama T. & Inouye I. Aurearenophyceae classis nova, a new class of Heterokontophyta based on a new marine unicellular alga Aurearena cruciata gen. et sp. nov. inhabiting sandy beaches. Protist 159, 435–457 (2008). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
