COMPARATIVE GUT PHYSIOLOGY SYMPOSIUM: Comparative physiology of digestion

J Anim Sci. 2015 Feb;93(2):485-91. doi: 10.2527/jas.2014-8481.

Abstract

The digestive systems of all species have been shaped by environmental pressures over long evolutionary time spans. Nevertheless, all digestive systems must achieve the same end points, the ingestion of biological material and its conversion to molecules that serve as energy substrates and structural components of tissues. A range of strategies to extract nutrients, including for animals reliant primarily on foregut fermentation, hindgut fermentation, and enzymatic degradation, have evolved. Moreover, animals have adapted to different foodstuffs as herbivores (including frugivores, folivores, granivores, etc.), carnivores, and omnivores. We present evidence that humans have diverged from other omnivores because of the long history of consumption of cooked or otherwise prepared food. We consider them to be cucinivores. We present examples to illustrate that the range of foodstuffs that can be efficiently assimilated by each group or species is limited and is different from that of other groups or species. Differences are reflected in alimentary tract morphology. The digestive systems of each group and of species within the groups are adaptable, with constraints determined by individual digestive physiology. Although overall digestive strategies and systems differ, the building blocks for digestion are remarkably similar. All vertebrates have muscular tubular tracts lined with a single layer of epithelial cells for most of the length, use closely related digestive enzymes and transporters, and control the digestive process through similar hormones and similarly organized nerve pathways. Extrapolations among species that are widely separated in their digestive physiologies are possible when the basis for extrapolation is carefully considered. Divergence is greatest at organ or organismal levels, and similarities are greatest at the cell and molecular level.

MeSH terms

  • Animals
  • Biological Evolution*
  • Cooking / methods*
  • Digestion / physiology*
  • Food*
  • Gastrointestinal Tract / anatomy & histology
  • Gastrointestinal Tract / physiology*
  • Humans
  • Physiology, Comparative / methods*
  • Species Specificity