The evolutionary diversity of insect retinal mosaics: common design principles and emerging molecular logic
- PMID: 26025917
- PMCID: PMC4458154
- DOI: 10.1016/j.tig.2015.04.006
The evolutionary diversity of insect retinal mosaics: common design principles and emerging molecular logic
Abstract
Independent evolution has resulted in a vast diversity of eyes. Despite the lack of a common Bauplan or ancestral structure, similar developmental strategies are used. For instance, different classes of photoreceptor cells (PRs) are distributed stochastically and/or localized in different regions of the retina. Here, we focus on recent progress made towards understanding the molecular principles behind patterning retinal mosaics of insects, one of the most diverse groups of animals adapted to life on land, in the air, under water, or on the water surface. Morphological, physiological, and behavioral studies from many species provide detailed descriptions of the vast variation in retinal design and function. By integrating this knowledge with recent progress in the characterization of insect Rhodopsins as well as insight from the model organism Drosophila melanogaster, we seek to identify the molecular logic behind the adaptation of retinal mosaics to the habitat and way of life of an animal.
Keywords: evolution; insect retina; ommatidia; patterning; regionalization; stochasticity.
Copyright © 2015 Elsevier Ltd. All rights reserved.
Figures
Similar articles
-
Developmental evolution of the insect retina: insights from standardized numbering of homologous photoreceptors.J Exp Zool B Mol Dev Evol. 2011 Nov 15;316(7):484-99. doi: 10.1002/jez.b.21424. Epub 2011 Jul 27. J Exp Zool B Mol Dev Evol. 2011. PMID: 21796775 Review.
-
Molecular logic behind the three-way stochastic choices that expand butterfly colour vision.Nature. 2016 Jul 14;535(7611):280-4. doi: 10.1038/nature18616. Epub 2016 Jul 6. Nature. 2016. PMID: 27383790 Free PMC article.
-
Sexual dimorphism and natural variation within and among species in the Drosophila retinal mosaic.BMC Evol Biol. 2014 Nov 26;14:240. doi: 10.1186/s12862-014-0240-x. BMC Evol Biol. 2014. PMID: 25424626 Free PMC article.
-
Mechanisms of Photoreceptor Patterning in Vertebrates and Invertebrates.Trends Genet. 2016 Oct;32(10):638-659. doi: 10.1016/j.tig.2016.07.004. Trends Genet. 2016. PMID: 27615122 Free PMC article. Review.
-
Expression of Drosophila rhodopsins during photoreceptor cell differentiation: insights into R7 and R8 cell subtype commitment.Gene Expr Patterns. 2006 Oct;6(7):687-94. doi: 10.1016/j.modgep.2006.01.003. Epub 2006 Feb 21. Gene Expr Patterns. 2006. PMID: 16495161
Cited by
-
Heterogeneity of synaptic connectivity in the fly visual system.Nat Commun. 2024 Feb 21;15(1):1570. doi: 10.1038/s41467-024-45971-z. Nat Commun. 2024. PMID: 38383614 Free PMC article.
-
From water to land: Evolution of photoreceptor circuits for vision in air.PLoS Biol. 2024 Jan 22;22(1):e3002422. doi: 10.1371/journal.pbio.3002422. eCollection 2024 Jan. PLoS Biol. 2024. PMID: 38252616 Free PMC article.
-
Whole genome sequence of a long-legged fly Condylostylus longicornis from Hawai'i.Front Genet. 2023 Dec 11;14:1325213. doi: 10.3389/fgene.2023.1325213. eCollection 2023. Front Genet. 2023. PMID: 38146342 Free PMC article. No abstract available.
-
Behavioral responses of free-flying Drosophila melanogaster to shiny, reflecting surfaces.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Nov;209(6):929-941. doi: 10.1007/s00359-023-01676-0. Epub 2023 Oct 5. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023. PMID: 37796303 Free PMC article.
-
Parallel Losses of Blue Opsin Correlate with Compensatory Neofunctionalization of UV-Opsin Gene Duplicates in Aphids and Planthoppers.Insects. 2023 Sep 20;14(9):774. doi: 10.3390/insects14090774. Insects. 2023. PMID: 37754742 Free PMC article.
References
-
- Land MF. The optical structures of animal eyes. Curr. Biol. 2005;15(9):R319–R323. - PubMed
-
- Nilsson DE, Kelber A. A functional analysis of compound eye evolution. Arthropod Struct. Dev. 2007;36(4):373–385. - PubMed
-
- Zelhof AC, et al. Transforming the architecture of compound eyes. Nature. 2006;443(7112):696–699. - PubMed
-
- Land ME. Compound eye structure: matching eye to environment. In: Archer SN, Djamgoz MBA, Loew E, Partridge JC, Vallerga S, editors. Adaptive Mechanisms in the Ecology of Vision. London: Chapman and Hall; 1999.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
