Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep 15:81:38-46.
doi: 10.1016/j.watres.2015.05.035. Epub 2015 May 21.

In-situ tryptophan-like fluorescence: A real-time indicator of faecal contamination in drinking water supplies

Affiliations
Free article

In-situ tryptophan-like fluorescence: A real-time indicator of faecal contamination in drinking water supplies

J P R Sorensen et al. Water Res. .
Free article

Abstract

Enteric pathogens are typically inferred from the presence of surrogate indicator organisms such as thermotolerant (faecal) coliforms (TTCs). The analysis of TTCs requires time-consuming incubation in suitable laboratories, which can limit sampling resolution, particularly during critical pollution events. Here, we demonstrate the use of in-situ fluorimeters targeting tryptophan-like compounds as a rapid, reagentless indicator of TTCs in groundwater-derived potable water supplies in Africa. A range of other common indicators of TTCs were also determined including nitrate, turbidity, and sanitary risk survey scores. Sampling was conducted during both the dry and wet seasons to investigate seasonality. Tryptophan-like fluorescence was the most effective predictor of both presence/absence and number of TTCs during both seasons. Seasonal changes in tryptophan-like fluorescence in deeper supplies suggest it is transported more efficiently through the aquifer than TTCs. Moreover, the perennial elevated concentrations in some wells suggest it is more resilient than TTCs in groundwater. Therefore tryptophan-like fluorescence could also be a better indicator of some smaller, more easily transported, and long-lived, pathogenic enteric viruses. These sensors have the potential to be included in real-time pollution alert systems for drinking water supplies throughout the world, as well as for mapping enteric pathogen risks in developing regions.

Keywords: Africa; Fluorescence spectrophotometry; Pathogens; Thermotolerant coliforms; Tryptophan-like; Waste water.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources