Background: MAPK7/ERK5 (extracellular-signal-regulated kinase 5) functions within a canonical three-tiered MAPK (mitogen activated protein kinase) signaling cascade comprising MEK (MAPK/ERK kinase) 5, MEKK(MEK kinase) 2/3 and ERK5 itself. Despite being the least well studied of the MAPK-modules, evidence supports a role for MAPK7-signaling in the pathology of several cancer types.
Methods and results: Fluorescence in situ hybridization (FISH) analysis identified MAPK7 gene amplification in 4% (3/74) of non-small cell lung cancers (NSCLC) (enriched to 6% (3/49) in squamous cell carcinoma) and 2% (2/95) of squamous esophageal cancers (sqEC). Immunohistochemical (IHC) analysis revealed a good correlation between MAPK7 gene amplification and protein expression. MAPK7 was validated as a proliferative oncogenic driver by performing in vitro siRNA knockdown of MAPK7 in tumor cell lines. Finally, a novel MEK5/MAPK7 co-transfected HEK293 cell line was developed and used for routine cell-based pharmacodynamic screening. Phosphorylation antibody microarray analysis also identified novel downstream pharmacodynamic (PD) biomarkers of MAPK7 kinase inhibition in tumor cells (pMEF2A and pMEF2D).
Conclusions: Together, these data highlight a broader role for dysregulated MAPK7 in driving tumorigenesis within niche populations of highly prevalent tumor types, and describe current efforts in establishing a robust drug discovery screening cascade.