Reactive and proactive controls of actions are cognitive abilities that allow one to deal with a continuously changing environment by adjusting already programmed actions. They also set forthcoming actions by evaluating the outcome of the previous ones. Earlier studies highlighted sex-related differences in the strategies and in the pattern of brain activation during cognitive tasks involving reactive and proactive control. To further identify sex-dependent characteristics in the cognitive control of actions, in this study, we have assessed whether/how differences in performance are modulated by the COMT Val158Met single-nucleotide polymorphism (SNP), a genetic factor known to influence the functionality of the dopaminergic system-in particular, at the level of the prefrontal cortex. Two groups of male and female participants were sorted according to their genotype (Val/Val, Val/Met, and Met/Met) and tested in a stop signal task, a consolidated tool for measuring executive control in experimental and clinical settings. In each group of participants, we estimated both a measure of the capacity to react to unexpected events and the ability to monitor their performance. The between-group comparison of these measures indicated a poorer ability of male individuals and Val/Val subjects in error-monitoring. These observations suggest that sex differences in inhibitory control could be influenced by the efficiency of COMT and that other sex-specific factors have to be considered. Understanding the inter-group variability of behavioral and physiological correlates of cognitive control could provide more accurate diagnostic tools for predicting the incidence and/or the development of pathologies, like ADHD, or deviant behaviors, such as drug or alcohol abuse.
Keywords: COMT; inhibition; motor; proactive control; sex differences.