Effectiveness of gene delivery systems for pluripotent and differentiated cells

Mol Ther Methods Clin Dev. 2015 Feb 18;2:14067. doi: 10.1038/mtm.2014.67. eCollection 2015.


Human embryonic stem cells (hESC) and induced pluripotent stem cells (hiPSC) assert a great future for the cardiovascular diseases, both to study them and to explore therapies. However, a comprehensive assessment of the viral vectors used to modify these cells is lacking. In this study, we aimed to compare the transduction efficiency of recombinant adeno-associated vectors (AAV), adenoviruses and lentiviral vectors in hESC, hiPSC, and the derived cardiomyocytes. In undifferentiated cells, adenoviral and lentiviral vectors were superior, whereas in differentiated cells AAV surpassed at least lentiviral vectors. We also tested four AAV serotypes, 1, 2, 6, and 9, of which 2 and 6 were superior in their transduction efficiency. Interestingly, we observed that AAVs severely diminished the viability of undifferentiated cells, an effect mediated by induction of cell cycle arrest genes and apoptosis. Furthermore, we show that the transduction efficiency of the different viral vectors correlates with the abundance of their respective receptors. Finally, adenoviral delivery of the calcium-transporting ATPase SERCA2a to hESC and hiPSC-derived cardiomyocytes successfully resulted in faster calcium reuptake. In conclusion, adenoviral vectors prove to be efficient for both differentiated and undifferentiated lines, whereas lentiviral vectors are more applicable to undifferentiated cells and AAVs to differentiated cells.