Multiple Redox Modes in the Reversible Lithiation of High-Capacity, Peierls-Distorted Vanadium Sulfide

J Am Chem Soc. 2015 Jul 8;137(26):8499-508. doi: 10.1021/jacs.5b03395. Epub 2015 Jun 23.

Abstract

Vanadium sulfide VS4 in the patronite mineral structure is a linear chain compound comprising vanadium atoms coordinated by disulfide anions [S2](2-). (51)V NMR shows that the material, despite having V formally in the d(1) configuration, is diamagnetic, suggesting potential dimerization through metal-metal bonding associated with a Peierls distortion of the linear chains. This is supported by density functional calculations, and is also consistent with the observed alternation in V-V distances of 2.8 and 3.2 Å along the chains. Partial lithiation results in reduction of the disulfide ions to sulfide S(2-), via an internal redox process whereby an electron from V(4+) is transferred to [S2](2-) resulting in oxidation of V(4+) to V(5+) and reduction of the [S2](2-) to S(2-) to form Li3VS4 containing tetrahedral [VS4](3-) anions. On further lithiation this is followed by reduction of the V(5+) in Li3VS4 to form Li3+xVS4 (x = 0.5-1), a mixed valent V(4+)/V(5+) compound. Eventually reduction to Li2S plus elemental V occurs. Despite the complex redox processes involving both the cation and the anion occurring in this material, the system is found to be partially reversible between 0 and 3 V. The unusual redox processes in this system are elucidated using a suite of short-range characterization tools including (51)V nuclear magnetic resonance spectroscopy (NMR), S K-edge X-ray absorption near edge spectroscopy (XANES), and pair distribution function (PDF) analysis of X-ray data.