The developmental evolution of the seizure phenotype and cortical inhibition in mouse models of juvenile myoclonic epilepsy
- PMID: 26054439
- PMCID: PMC4641014
- DOI: 10.1016/j.nbd.2015.05.016
The developmental evolution of the seizure phenotype and cortical inhibition in mouse models of juvenile myoclonic epilepsy
Abstract
The GABA(A) receptor (GABA(A)R) α1 subunit mutation, A322D, causes autosomal dominant juvenile myoclonic epilepsy (JME). Previous in vitro studies demonstrated that A322D elicits α1(A322D) protein degradation and that the residual mutant protein causes a dominant-negative effect on wild type GABA(A)Rs. Here, we determined the effects of heterozygous A322D knockin (Het(α1)AD) and deletion (Het(α1)KO) on seizures, GABA(A)R expression, and motor cortex (M1) miniature inhibitory postsynaptic currents (mIPSCs) at two developmental time-points, P35 and P120. Both Het(α1)AD and Het(α1)KO mice experience absence seizures at P35 that persist at P120, but have substantially more frequent spontaneous and evoked polyspike wave discharges and myoclonic seizures at P120. Both mutant mice have increased total and synaptic α3 subunit expression at both time-points and decreased α1 subunit expression at P35, but not P120. There are proportional reductions in α3, β2, and γ2 subunit expression between P35 and P120 in wild type and mutant mice. In M1, mutants have decreased mIPSC peak amplitudes and prolonged decay constants compared with wild type, and the Het(α1)AD mice have reduced mIPSC frequency and smaller amplitudes than Het(α1)KO mice. Wild type and mutants exhibit proportional increases in mIPSC amplitudes between P35 and P120. We conclude that Het(α1)KO and Het(α1)AD mice model the JME subsyndrome, childhood absence epilepsy persisting and evolving into JME. Both mutants alter GABA(A)R composition and motor cortex physiology in a manner expected to increase neuronal synchrony and excitability to produce seizures. However, developmental changes in M1 GABA(A)Rs do not explain the worsened phenotype at P120 in mutant mice.
Keywords: Brain; Confocal microscopy; Electroencephalography; Electrophysiology; Immunofluorescence; Patch-clamp; Western blot.
Copyright © 2015 Elsevier Inc. All rights reserved.
Figures
Similar articles
-
The juvenile myoclonic epilepsy GABA(A) receptor alpha1 subunit mutation A322D produces asymmetrical, subunit position-dependent reduction of heterozygous receptor currents and alpha1 subunit protein expression.J Neurosci. 2004 Jun 16;24(24):5570-8. doi: 10.1523/JNEUROSCI.1301-04.2004. J Neurosci. 2004. PMID: 15201329 Free PMC article.
-
GABA(A) receptor alpha1 subunit mutation A322D associated with autosomal dominant juvenile myoclonic epilepsy reduces the expression and alters the composition of wild type GABA(A) receptors.J Biol Chem. 2010 Aug 20;285(34):26390-405. doi: 10.1074/jbc.M110.142299. Epub 2010 Jun 15. J Biol Chem. 2010. PMID: 20551311 Free PMC article.
-
Molecular analysis of the A322D mutation in the GABA receptor alpha-subunit causing juvenile myoclonic epilepsy.Eur J Neurosci. 2005 Jul;22(1):10-20. doi: 10.1111/j.1460-9568.2005.04168.x. Eur J Neurosci. 2005. PMID: 16029191
-
Autosomal dominant juvenile myoclonic epilepsy and GABRA1.Adv Neurol. 2005;95:255-63. Adv Neurol. 2005. PMID: 15508928 Review. No abstract available.
-
Transition to absence seizures and the role of GABA(A) receptors.Epilepsy Res. 2011 Dec;97(3):283-9. doi: 10.1016/j.eplepsyres.2011.07.011. Epub 2011 Sep 1. Epilepsy Res. 2011. PMID: 21889315 Free PMC article. Review.
Cited by
-
An Open-Source Mouse Chronic EEG Array System with High-Density MXene-Based Skull Surface Electrodes.eNeuro. 2024 Feb 22;11(2):ENEURO.0512-22.2023. doi: 10.1523/ENEURO.0512-22.2023. Print 2024 Feb. eNeuro. 2024. PMID: 38388423 Free PMC article.
-
Characterization of the zebrafish gabra1sa43718/sa43718 germline loss of function allele confirms a function for Gabra1 in motility and nervous system development.bioRxiv [Preprint]. 2023 Sep 25:2023.01.27.525860. doi: 10.1101/2023.01.27.525860. bioRxiv. 2023. PMID: 36747751 Free PMC article. Preprint.
-
Imaging Genetics in Epilepsy: Current Knowledge and New Perspectives.Front Mol Neurosci. 2022 May 30;15:891621. doi: 10.3389/fnmol.2022.891621. eCollection 2022. Front Mol Neurosci. 2022. PMID: 35706428 Free PMC article. Review.
-
Pharmacological activation of ATF6 remodels the proteostasis network to rescue pathogenic GABAA receptors.Cell Biosci. 2022 Apr 27;12(1):48. doi: 10.1186/s13578-022-00783-w. Cell Biosci. 2022. PMID: 35477478 Free PMC article.
-
Neurophysiological and Genetic Findings in Patients With Juvenile Myoclonic Epilepsy.Front Integr Neurosci. 2020 Aug 20;14:45. doi: 10.3389/fnint.2020.00045. eCollection 2020. Front Integr Neurosci. 2020. PMID: 32973469 Free PMC article.
References
-
- Akman O, Demiralp T, Ates N, Onat FY. Electroencephalographic differences between WAG/Rij and GAERS rat models of absence epilepsy. Epilepsy Res. 2010;89:185–193. - PubMed
-
- Badawy RA, Vogrin SJ, Lai A, Cook MJ. Patterns of cortical hyperexcitability in adolescent/adult-onset generalized epilepsies. Epilepsia. 2013;54:871–878. - PubMed
-
- Bartolini E, Pesaresi I, Fabbri S, Cecchi P, Giorgi FS, Sartucci F, et al. Abnormal response to photic stimulation in Juvenile Myoclonic Epilepsy: An EEG-fMRI study. Epilepsia. 2014 - PubMed
-
- Benarroch EE. GABAA receptor heterogeneity, function, and implications for epilepsy. Neurology. 2007;68:612–614. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
