TBL1XR1 in Physiological and Pathological States

Am J Clin Exp Urol. 2015 Apr 25;3(1):13-23. eCollection 2015.

Abstract

Transducin (beta)-like 1X related protein 1 (TBL1XR1/TBLR1) is an integral subunit of the NCoR (nuclear receptor corepressor) and SMRT (silencing mediator of retinoic acid and thyroid hormone receptors) repressor complexes. It is an evolutionally conserved protein that shares high similarity across all species. TBL1XR1 is essential for transcriptional repression mediated by unliganded nuclear receptors (NRs) and othe regulated transcription factors (TFs). However, it can also act as a transcription activator through the recruitment of the ubiquitin-conjugating/19S proteasome complex that mediates the exchange of corepressors for coactivators. TBL1XR1 is required for the activation of multiple intracellular signaling pathways. TBL1XR1 germline mutations and recurrent mutations are linked to intellectual disability. Upregulation of TBL1XR1 is observed in a variety of solid tumors, which is associated with advanced tumor stage, metastasis and poor prognosis. A variety of genomic alterations, such as translocation, deletion and mutation have been identified in many types of neoplasms. Loss of TBL1XR1 in B-lymphoblastic leukemia disrupts glucocorticoid receptor recruitment to chromatin and results in glucocorticoid resistance. However, the mechanisms of other types of genomic changes in tumorogenesis are still not clear. A pre-clinical study has shown that the disruption of the interaction between TBL1X and β-catenin using a small molecule can inhibit the growth of AML stem and blast cells both in vitro and in vivo. These findings shed light on the therapeutic potentials of targeting TBL1XR1 related proteins in cancer treatment.

Keywords: TBL1X; TBL1XR1; coactivator; corepressor; targeted therapy.

Publication types

  • Review