Cooperative and Competitive Spreading Dynamics on the Human Connectome
- PMID: 26087168
- DOI: 10.1016/j.neuron.2015.05.035
Cooperative and Competitive Spreading Dynamics on the Human Connectome
Abstract
Increasingly detailed data on the network topology of neural circuits create a need for theoretical principles that explain how these networks shape neural communication. Here we use a model of cascade spreading to reveal architectural features of human brain networks that facilitate spreading. Using an anatomical brain network derived from high-resolution diffusion spectrum imaging (DSI), we investigate scenarios where perturbations initiated at seed nodes result in global cascades that interact either cooperatively or competitively. We find that hub regions and a backbone of pathways facilitate early spreading, while the shortest path structure of the connectome enables cooperative effects, accelerating the spread of cascades. Finally, competing cascades become integrated by converging on polysensory associative areas. These findings show that the organizational principles of brain networks shape global communication and facilitate integrative function.
Copyright © 2015 Elsevier Inc. All rights reserved.
Comment in
-
What Cascade Spreading Models Can Teach Us about the Brain.Neuron. 2015 Jun 17;86(6):1327-9. doi: 10.1016/j.neuron.2015.06.006. Neuron. 2015. PMID: 26087160 Free PMC article.
Similar articles
-
Individual variability in the anatomical distribution of nodes participating in rich club structural networks.Front Neural Circuits. 2015 Apr 21;9:16. doi: 10.3389/fncir.2015.00016. eCollection 2015. Front Neural Circuits. 2015. PMID: 25954161 Free PMC article.
-
Kuramoto model simulation of neural hubs and dynamic synchrony in the human cerebral connectome.BMC Neurosci. 2015 Sep 2;16:54. doi: 10.1186/s12868-015-0193-z. BMC Neurosci. 2015. PMID: 26329640 Free PMC article.
-
Path ensembles and a tradeoff between communication efficiency and resilience in the human connectome.Brain Struct Funct. 2017 Jan;222(1):603-618. doi: 10.1007/s00429-016-1238-5. Epub 2016 Jun 22. Brain Struct Funct. 2017. PMID: 27334341
-
The parcellation-based connectome: limitations and extensions.Neuroimage. 2013 Oct 15;80:397-404. doi: 10.1016/j.neuroimage.2013.03.053. Epub 2013 Apr 1. Neuroimage. 2013. PMID: 23558097 Review.
-
Bottom up modeling of the connectome: linking structure and function in the resting brain and their changes in aging.Neuroimage. 2013 Oct 15;80:318-29. doi: 10.1016/j.neuroimage.2013.04.055. Epub 2013 Apr 26. Neuroimage. 2013. PMID: 23629050 Review.
Cited by
-
Data-driven modelling of neurodegenerative disease progression: thinking outside the black box.Nat Rev Neurosci. 2024 Feb;25(2):111-130. doi: 10.1038/s41583-023-00779-6. Epub 2024 Jan 8. Nat Rev Neurosci. 2024. PMID: 38191721 Review.
-
Hubs of long-distance co-alteration characterize brain pathology.Hum Brain Mapp. 2020 Oct 1;41(14):3878-3899. doi: 10.1002/hbm.25093. Epub 2020 Jun 20. Hum Brain Mapp. 2020. PMID: 32562581 Free PMC article.
-
Brain tissue segmentation in neurosurgery: a systematic analysis for quantitative tractography approaches.Acta Neurol Belg. 2024 Feb;124(1):1-15. doi: 10.1007/s13760-023-02170-9. Epub 2023 Jan 6. Acta Neurol Belg. 2024. PMID: 36609837 Review.
-
Whole-Brain Network Models: From Physics to Bedside.Front Comput Neurosci. 2022 May 26;16:866517. doi: 10.3389/fncom.2022.866517. eCollection 2022. Front Comput Neurosci. 2022. PMID: 35694610 Free PMC article. Review.
-
Time-resolved structure-function coupling in brain networks.Commun Biol. 2022 Jun 2;5(1):532. doi: 10.1038/s42003-022-03466-x. Commun Biol. 2022. PMID: 35654886 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
