Distinct Sources of Hematopoietic Progenitors Emerge before HSCs and Provide Functional Blood Cells in the Mammalian Embryo

Cell Rep. 2015 Jun 30;11(12):1892-904. doi: 10.1016/j.celrep.2015.05.036. Epub 2015 Jun 18.

Abstract

Hematopoietic potential arises in mammalian embryos before adult-repopulating hematopoietic stem cells (HSCs). At embryonic day 9.5 (E9.5), we show the first murine definitive erythro-myeloid progenitors (EMPs) have an immunophenotype distinct from primitive hematopoietic progenitors, maturing megakaryocytes and macrophages, and rare B cell potential. EMPs emerge in the yolk sac with erythroid and broad myeloid, but not lymphoid, potential. EMPs migrate to the fetal liver and rapidly differentiate, including production of circulating neutrophils by E11.5. Although the surface markers, transcription factors, and lineage potential associated with EMPs overlap with those found in adult definitive hematopoiesis, they are present in unique combinations or proportions that result in a specialized definitive embryonic progenitor. Furthermore, we find that embryonic stem cell (ESC)-derived hematopoiesis recapitulates early yolk sac hematopoiesis, including primitive, EMP, and rare B cell potential. EMPs do not have long-term potential when transplanted in immunocompromised adults, but they can provide transient adult-like RBC reconstitution.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Cells / cytology
  • Cell Lineage
  • Embryo, Mammalian
  • Embryonic Development / genetics*
  • Embryonic Stem Cells*
  • Gene Expression Regulation, Developmental
  • Hematopoiesis*
  • Hematopoietic Stem Cells*
  • Mice
  • Yolk Sac / cytology
  • Yolk Sac / growth & development