Epidemiologic and Molecular Relationship Between Vaccine Manufacture and Autism Spectrum Disorder Prevalence

Issues Law Med. 2015 Spring;30(1):47-70.


Objectives: To assess the public health consequences of fetal cell line manufactured vaccines that contain residual human fetal DNA fragments utilizing laboratory and ecological approaches including statistics, molecular biology and genomics.

Method: MMR coverage and autism disorder or autism spectrum disorder prevalence data for Norway, Sweden and the UK were obtained from public and government websites as well as peer reviewed published articles. Biologically, the size and quantity of the contaminating fetal DNA in Meruvax II and Havrix as well as the propensity of various cell lines for cellular and nuclear uptake of primitive human DNA fragments were measured and quantified using gel electrophoresis, fluorescence microscopy and fluorometry. Lastly, genomic analysis identified the specific sites where fetal DNA fragment integration into a child's genome is most likely to occur.

Results: The average MMR coverage for the three countries fell below 90% after Dr. Wakefield's infamous 1998 publication but started to recover slowly after 2001 until reaching over 90% coverage again by 2004. During the same time period, the average autism spectrum disorder prevalence in the United Kingdom, Norway and Sweden dropped substantially after birth year 1998 and gradually increased again after birth year 2000. Average single stranded DNA and double stranded DNA in Meruvax II were 142.05 ng/vial and 35.00 ng/vial, respectively, and 276.00 ng/vial and 35.74 ng/vial in Havrix respectively. The size of the fetal DNA fragments in Meruvax II was approximately 215 base pairs. There was spontaneous cellular and nuclear DNA uptake in HFF1 and NCCIT cells. Genes that have been linked to autism (autism associated genes; AAGs) have a more concentrated susceptibility for insults to genomic stability in comparison to the group of all genes contained within the human genome. Of the X chromosome AAGs, 15 of 19 have double strand break motifs less than 100 kilobases away from the center of a meiotic recombination hotspot located within an exon.

Conclusion: Vaccines manufactured in human fetal cell lines contain unacceptably high levels of fetal DNA fragment contaminants. The human genome naturally contains regions that are susceptible to double strand break formation and DNA insertional mutagenesis. The "Wakefield Scare" created a natural experiment that may demonstrate a causal relationship between fetal cell-line manufactured vaccines and ASD prevalence.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Autistic Disorder / epidemiology*
  • Autistic Disorder / genetics*
  • Cell Line
  • DNA / isolation & purification*
  • DNA Fragmentation
  • Fetus*
  • Humans
  • Measles-Mumps-Rubella Vaccine / chemistry*
  • Mutagenesis, Insertional*


  • Measles-Mumps-Rubella Vaccine
  • DNA