Feed form and energy concentration of the diet affect growth performance and digestive tract traits of brown-egg laying pullets from hatching to 17 weeks of age

Poult Sci. 2015 Aug;94(8):1879-93. doi: 10.3382/ps/pev145. Epub 2015 Jun 25.

Abstract

The influence of feed form and energy concentration of the diet on growth performance and the development of the gastrointestinal tract (GIT) was studied in brown-egg laying pullets. Diets formed a 2 x 5 factorial with 2 feed forms (mash vs. crumbles) and 5 levels of energy differing in 50 kcal AMEn/kg. For the entire study (0 to 17 wk of age) feeding crumbles increased ADFI (52.9 vs. 49.7 g; P < 0.001) and ADG (12.7 vs. 11.6 g; P < 0.001) and improved feed conversion ratio (FCR; 4.18 vs. 4.27; P < 0.001). An increase in the energy content of the diet decreased ADFI linearly (P < 0.001) and improved FCR quadratically (P < 0.01) but energy intake (kcal AMEn/d) was not affected. BW uniformity was higher (P < 0.05) in pullets fed crumbles than in those fed mash but was not affected (P > 0.05) by energy content of the diet. At 5, 10, and 17 wk of age, the relative weight (RW, % BW) of the GIT and the gizzard, and gizzard digesta content were lower (P < 0.05 to P < 0.001) and gizzard pH was higher (P < 0.05 to P < 0.001) in pullets fed crumbles than in pullets fed mash. Energy concentration of the diet did not affect any of the GIT variables studied. In summary, feeding crumbles improved pullet performance and reduced the RW of the GIT and gizzard, and increased gizzard pH at all ages. An increase in the energy content of the diet improved FCR from 0 to 17 wk of age. The use of crumbles and the increase in the AMEn content of the diet might be used adventageously when the objetive is to increase the BW of the pullets. However, crumbles affected the development and weight of the organs of the GIT, which might have negative effects on feed intake and egg production at the beginning of the egg laying cycle.

Keywords: BW uniformity; crumble diet; gizzard pH; mash diet.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Feed / analysis*
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Chickens / anatomy & histology
  • Chickens / growth & development*
  • Diet / veterinary*
  • Digestion / physiology
  • Energy Intake / physiology
  • Energy Metabolism
  • Female
  • Gastrointestinal Tract / growth & development
  • Oviposition