Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode

Bioessays. 2015 Aug;37(8):921-8. doi: 10.1002/bies.201500002. Epub 2015 Jun 25.


Luminescence-based sensing schemes for oxygen have experienced a fast growth and are in the process of replacing the Clark electrode in many fields. Unlike electrodes, sensing is not limited to point measurements via fiber optic microsensors, but includes additional features such as planar sensing, imaging, and intracellular assays using nanosized sensor particles. In this essay, I review and discuss the essentials of (i) common solid-state sensor approaches based on the use of luminescent indicator dyes and host polymers; (ii) fiber optic and planar sensing schemes; (iii) nanoparticle-based intracellular sensing; and (iv) common spectroscopies. Optical sensors are also capable of multiple simultaneous sensing (such as O2 and temperature). Sensors for O2 are produced nowadays in large quantities in industry. Fields of application include sensing of O2 in plant and animal physiology, in clinical chemistry, in marine sciences, in the chemical industry and in process biotechnology.

Keywords: fluorescence; imaging; luminescence; microsensor; nanosensor; oxygen; sensor.

Publication types

  • Review

MeSH terms

  • Animals
  • Electrodes
  • Fiber Optic Technology
  • Fluorescent Dyes / chemistry
  • Humans
  • Optical Imaging
  • Oximetry / instrumentation*
  • Oximetry / methods
  • Oxygen / analysis
  • Oxygen / chemistry*
  • Oxygen Consumption


  • Fluorescent Dyes
  • Oxygen