Positron Emission Tomography/Magnetic Resonance Imaging for Local Tumor Staging in Patients With Primary Breast Cancer: A Comparison With Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging

Invest Radiol. 2015 Aug;50(8):505-13. doi: 10.1097/RLI.0000000000000197.


Objectives: This study aimed to assess the diagnostic performance of integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) of the breast for lesion detection and local tumor staging of patients with primary breast cancer in comparison to PET/computed tomography (CT) and MRI.

Materials and methods: The study was approved by the local institutional review board. Forty-nine patients with biopsy-proven invasive breast cancer were prospectively enrolled in our study. All patients underwent a PET/CT, and subsequently, a contrast-enhanced PET/MRI of the breast after written informed consent was obtained before each examination. Two radiologists independently evaluated the corresponding data sets (PET/CT, PET/MRI, and MRI) and were instructed to identify primary tumors lesions as well as multifocal/multicentric and bilateral disease. Furthermore, the occurrence of lymph node metastases was assessed, and the T-stage for each patient was determined. Histopathological verification of the local tumor extent and the axillary lymph node status was available for 30 of 49 and 48 of 49 patients, respectively. For the remaining patients, a consensus characterization was performed for the determination of the T-stage and nodal status, taking into account the results of clinical staging, PET/CT, and PET/MRI examinations. Statistical analysis was performed to test for differences in diagnostic performance between the different imaging procedures. P values less than 0.05 were considered to be statistically significant.

Results: Positron emission tomography/MRI and MRI correctly identified 47 (96%) of the 49 patients with primary breast cancer, whereas PET/CT enabled detection of 46 (94%) of 49 breast cancer patients and missed a synchronous carcinoma in the contralateral breast in 1 patient. In a lesion-by-lesion analysis, no significant differences could be obtained between the 3 imaging procedures for the identification of primary breast cancer lesions (P > 0.05). Positron emission tomography/MRI and MRI allowed for a correct identification of multifocal/multicentric disease in 3 additional patients if compared with PET/CT. For the definition of the correct T-stage, PET/MRI and MRI showed identical results and were correct in significantly more cases than PET/CT (PET/MRI and MRI, 82%; PET/CT, 68%; P < 0.05). Furthermore, the calculated sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy for the detection of nodal positive patients (n = 18) were 78%, 94%, 88%, 88%, and 88% for PET/CT; 67%, 87%, 75%, 82%, and 80% for MRI; and 78%, 90%, 82%, 88%, and 86% for PET/MRI, respectively. Differences between the imaging modalities were not statistically significant (P > 0.05).

Conclusions: Integrated PET/MRI does not provide diagnostic advantages for local tumor staging of breast cancer patients in comparison to MRI alone. Positron emission tomography/MRI and MRI enable an improved determination of the local tumor extent in comparison to PET/CT, whereas all 3 imaging modalities offer a comparable diagnostic performance for the identification of axillary disease.

Publication types

  • Comparative Study

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Breast / diagnostic imaging
  • Breast / pathology
  • Breast Neoplasms / diagnosis*
  • Contrast Media
  • Female
  • Humans
  • Image Enhancement
  • Magnetic Resonance Imaging*
  • Mammography
  • Middle Aged
  • Multimodal Imaging*
  • Observer Variation
  • Positron-Emission Tomography*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Tomography, X-Ray Computed*


  • Contrast Media