Measuring PI3K Activation: Clinicopathologic, Immunohistochemical, and RNA Expression Analysis in Prostate Cancer

Mol Cancer Res. 2015 Oct;13(10):1431-40. doi: 10.1158/1541-7786.MCR-14-0569. Epub 2015 Jun 29.


Assessing the extent of PI3K pathway activity in cancer is vital to predicting sensitivity to PI3K-targeting drugs, but the best biomarker of PI3K pathway activity in archival tumor specimens is unclear. Here, PI3K pathway activation was assessed, in clinical tissue from 1,021 men with prostate cancers, using multiple pathway nodes that include PTEN, phosphorylated AKT (pAKT), phosphorylated ribosomal protein S6 (pS6), and stathmin. Based on these markers, a 9-point score of PI3K activation was created using the combined intensity of the 4-markers and analyzed its association with proliferation (Ki67), apoptosis (TUNEL), and androgen receptor (AR) status, as well as pathologic features and cancer-specific outcomes. In addition, the PI3K activation score was compared with mRNA expression profiling data for a large subset of men. Interestingly, those tumors with higher PI3K activation scores also had higher Gleason grade (P = 0.006), increased AR (r = 0.37; P < 0.001) and Ki67 (r = 0.24; P < 0.001), and decreased TUNEL (r = -0.12; P = 0.003). Although the PI3K activation score was not associated with an increased risk of lethal outcome, a significant interaction between lethal outcome, Gleason and high PI3K score (P = 0.03) was observed. Finally, enrichment of PI3K-specific pathways was found in the mRNA expression patterns differentiating the low and high PI3K activation scores; thus, the 4-marker IHC score of PI3K pathway activity correlates with features of PI3K activation.

Implications: The relationship of this activation score to sensitivity to anti-PI3K agents remains to be tested but may provide more precision guidance when selecting patients for these therapies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Cohort Studies
  • Enzyme Activation
  • Humans
  • Immunohistochemistry
  • Male
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Prostatic Neoplasms / enzymology
  • Prostatic Neoplasms / genetics
  • Prostatic Neoplasms / metabolism*
  • Prostatic Neoplasms / pathology
  • RNA, Neoplasm / biosynthesis*
  • RNA, Neoplasm / genetics
  • Signal Transduction


  • RNA, Neoplasm
  • Phosphatidylinositol 3-Kinases