Genetic structure and population diversity of eleven edible herbs of Eastern Crete

J Biol Res (Thessalon). 2015 May 30;22(1):7. doi: 10.1186/s40709-015-0030-7. eCollection 2015 Dec.

Abstract

Background: The present work aimed to investigate the genetic structure of 11 edible herbs grown in the wild of eastern Crete that are becoming vulnerable due to habitat destruction and unregulated harvesting. Thirty three populations (268 individuals) of Reichardia picroides, Scolymus hispanicus, Scandix pecten-veneris, Leontodon tuberosus, Cichorium spinosum, Sonchus asper ssp. glaucescens, Urospermum picroides, Prasium majus, Hypochoeris radicata, Centaurea raphanina ssp. raphanina and Anagallis arvensis were collected and identified from nine regions with distinct microclimate (Lassithi prefecture), and their genetic composition was studied by means of RAPD markers.

Results: A total of ten primers per population were used to detect genetic diversity and bootstrap analysis was conducted for clustering the samples. High levels of heterogeneity were revealed while the Analysis of Molecular Variance documented that variance was allocated mainly within populations and at a lesser extent among populations. Fst values among regions were moderate to high, suggesting partial population fragmentation. Bayesian structure analysis revealed fine genetic composition and substantial admixture between species present in different regions, although clustering was mainly geographically related.

Conclusions: High altitude regions, with little residential and agricultural development (Kefala, Agrilos, Ziros and Tziritis), were the areas where high biodiversity was detected. On the other hand, coastal regions had lower biodiversity, probably due to degradation of their habitat.

Keywords: AMOVA; Compositae; DNA amplification fingerprinting; Labiatae; Primulaceae; Umbelliferae.