Kicking it up a Notch for the best in show: Scalloped leads Yorkie into the haematopoietic arena
- PMID: 26151599
- PMCID: PMC4594362
- DOI: 10.1080/19336934.2015.1055427
Kicking it up a Notch for the best in show: Scalloped leads Yorkie into the haematopoietic arena
Abstract
Maintenance and differentiation of progenitor cells is essential for proper organ development and adaptation to environmental stress and injury. In Drosophila melanogaster, the haematopietic system serves as an ideal model for interrogating the function of signaling pathways required for progenitor maintenance and cell fate determination. Here we focus on the role of the Hippo pathway effectors Yorkie and Scalloped in mediating and facilitating Notch signaling-mediated lineage specification in the lymph gland, the primary center for haematopoiesis within the developing larva. We discuss the regulatory mechanisms which promote Notch activity during normal haematopoiesis and its modulation during immune challenge conditions. We provide additional evidence establishing the hierarchy of signaling events during crystal cell formation, highlighting the relationship between Yorkie, Scalloped and Lozenge, while expanding on the role of Yorkie in promoting hemocyte survival and the developmental regulation of Notch and its ligand, Serrate, within the lymph gland. Finally, we propose additional areas of exploration that may provide mechanistic insight into the environmental and non-cell autonomous regulation of cell fate in the blood system.
Keywords: CZ, Cortical Zone; LSC, Lineage Specifying Cell; Lz, Lozenge; MZ, Medullary Zone; PSC, Posterior Signaling Center; ProPO, Prophenoloxidase; Sd, Scalloped; WT, wild-type; Yki, Yorkie; Yorkie; crystal cell; haematopoiesis; lymph lland; notch; scalloped; serrate.
Figures
Similar articles
-
Yorkie and Scalloped signaling regulates Notch-dependent lineage specification during Drosophila hematopoiesis.Curr Biol. 2014 Nov 17;24(22):2665-72. doi: 10.1016/j.cub.2014.09.081. Epub 2014 Oct 30. Curr Biol. 2014. PMID: 25454586 Free PMC article.
-
Opposing transcriptional and post-transcriptional roles for Scalloped in binary Hippo-dependent neural fate decisions.Dev Biol. 2019 Nov 1;455(1):51-59. doi: 10.1016/j.ydbio.2019.06.022. Epub 2019 Jun 29. Dev Biol. 2019. PMID: 31265830 Free PMC article.
-
Validating upstream regulators of Yorkie activity in Hippo signaling through scalloped-based genetic epistasis.Development. 2018 Feb 21;145(4):dev157545. doi: 10.1242/dev.157545. Development. 2018. PMID: 29467233 Free PMC article.
-
A role for Hipk in the Hippo pathway.Sci Signal. 2013 May 14;6(275):pe18. doi: 10.1126/scisignal.2004259. Sci Signal. 2013. PMID: 23674821 Review.
-
Notch signalling in the nucleus: roles of Mastermind-like (MAML) transcriptional coactivators.J Biochem. 2016 Mar;159(3):287-94. doi: 10.1093/jb/mvv123. Epub 2015 Dec 28. J Biochem. 2016. PMID: 26711237 Review.
Cited by
-
Role of YAP as a Mechanosensing Molecule in Stem Cells and Stem Cell-Derived Hematopoietic Cells.Int J Mol Sci. 2022 Nov 23;23(23):14634. doi: 10.3390/ijms232314634. Int J Mol Sci. 2022. PMID: 36498961 Free PMC article. Review.
-
Single-cell RNA-seq uncovered hemocyte functional subtypes and their differentiational characteristics and connectivity with morphological subpopulations in Litopenaeus vannamei.Front Immunol. 2022 Sep 13;13:980021. doi: 10.3389/fimmu.2022.980021. eCollection 2022. Front Immunol. 2022. PMID: 36177045 Free PMC article.
-
YAP and TAZ play a crucial role in human erythrocyte maturation and enucleation.Stem Cell Res Ther. 2022 Sep 8;13(1):467. doi: 10.1186/s13287-022-03166-7. Stem Cell Res Ther. 2022. PMID: 36076260 Free PMC article.
-
Intrinsic and Extrinsic Regulation of Hematopoiesis in Drosophila.Mol Cells. 2022 Mar 31;45(3):101-108. doi: 10.14348/molcells.2022.2039. Mol Cells. 2022. PMID: 35253654 Free PMC article. Review.
-
Translational Control of Serrate Expression in Drosophila Cells.In Vivo. 2021 Mar-Apr;35(2):859-869. doi: 10.21873/invivo.12326. In Vivo. 2021. PMID: 33622878 Free PMC article.
References
-
- Rugendorff A, Younossi-Hartenstein A, Hartenstein V. Embryonic origin and differentiation of the Drosophila heart. Roux's Arch Dev Biol 1994; 203:266-80; http://dx.doi.org/10.1007/BF00360522 - DOI - PubMed
-
- Lanot R, Zachary D, Holder F, Meister M. Postembryonic Hematopoiesis in Drosophila. Dev Biol 2001; 230:243-57; PMID:11161576; http://dx.doi.org/10.1006/dbio.2000.0123 - DOI - PubMed
-
- Jung S-H, Evans CJ, Uemura C, Banerjee U. The Drosophila lymph gland as a developmental model of haematopoiesis. Dev 2005; 132:2521-33; PMID:15857916; http://dx.doi.org/10.1242/dev.01837 - DOI - PubMed
-
- Kurucz É, Márkus R, Zsámboki J, Folkl-Medzihradszky K, Darula Z, Vilmos P, Udvardy A, Krausz I, Lukacsovich T, Gateff E, et al. . Nimrod, a Putative Phagocytosis Receptor with EGF Repeats in Drosophila Plasmatocytes. Curr Biol 2007; 17:649-54; PMID:Can't14602069http://dx.doi.org/10.1016/j.cub.2007.02.041 - DOI - PubMed
-
- Evans CJ, Hartenstein V, Banerjee U. Thicker Than Blood: Conserved Mechanisms in Drosophila and Vertebrate Hematopoiesis. Dev Cell 2003; 5:673-90; PMID:14602069http://dx.doi.org/10.1016/S1534-5807(03)00335-6 - DOI - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
