The effect of transmitted Er:YAG laser energy through a dental ceramic on different types of resin cements

Lasers Surg Med. 2015 Sep;47(7):602-607. doi: 10.1002/lsm.22394. Epub 2015 Jul 6.

Abstract

Background and objective: The laser debonding procedure of adhesively luted all-ceramic restorations is based on the ablation of resin cement due to the transmitted laser energy through the ceramic. The purpose of this study was to determine the effect of Er:YAG laser irradiation transmitted through a dental ceramic on five different resin cements.

Materials and methods: Five different resin cements were evaluated in this study: G-Cem LinkAce, Multilink Automix, Variolink II, Panavia F, and Rely X Unicem U100. Disc shaped resin cement specimens (n = 10) were fabricated for each group. A ceramic disc was placed between the resin cement discs and the tip of the handpiece of Er:YAG laser device. The resin cement discs were irradiated through the ceramic and the volume of the resin cement discs were measured using a micro-CT system before and after Er:YAG laser irradiation. The volume loss of the resin cement discs was calculated and analyzed with one-way ANOVA and Tukey-HSD tests.

Results: The highest volume loss was determined in G-Cem (1.1 ± 0.6 mm3 ) and Multilink (1.3 ± 0.1 mm3 ) (P < 0.05) groups, and the lowest volume loss was determined in Rely X (0.3 ± 0.07 mm3 ), Variolink (0.4 ± 0.2 mm3 ), and Panavia (0.6 ± 0.2 mm3 ) groups (P < 0.05). All resin cements were affected by the laser irradiation resulting in the volume loss of the cement; however, there are significant differences among different resin cements.

Conclusions: All the resin cements tested in this study were effected by the Er:YAG laser irradiation and there were significant differences among the resin cements with regard to ablation volume. Lasers Surg. Med. 47:602-607, 2015. © 2015 Wiley Periodicals, Inc.

Keywords: adhesive cement; debonding; microCT.