Modified toolbox for optogenetics in the nonhuman primate

Neurophotonics. 2015 Jul;2(3):031202. doi: 10.1117/1.NPh.2.3.031202. Epub 2015 May 29.


Attracted by the appealing advantages of optogenetics, many nonhuman primate labs are attempting to incorporate this technique in their experiments. Despite some reported successes by a few groups, many still find it difficult to develop a reliable way to transduce cells in the monkey brain and subsequently monitor light-induced neuronal activity. Here, we describe a methodology that we have developed and successfully deployed on a regular basis with multiple monkeys. All devices and accessories are easy to obtain and results using these have been proven to be highly replicable. We developed the "in-chair" viral injection system and used tapered and thinner fibers for optical stimulation, which significantly improved the efficacy and reduced tissue damage. With these methods, we have successfully transduced cells in multiple monkeys in both deep and shallow cortical areas. We could reliably obtain neural modulation for months after injection, and no light-induced artifacts were observed during recordings. Further experiments using these methods have shown that optogenetic stimulation can be used to bias spatial attention in a visual choice discrimination task in a way comparable to electrical microstimulation, which demonstrates the potential use of our methods in both fundamental research and clinical applications.

Keywords: methodology; nonhuman primate; optogenetics.