Self-organizing human cardiac microchambers mediated by geometric confinement
- PMID: 26172574
- PMCID: PMC4503387
- DOI: 10.1038/ncomms8413
Self-organizing human cardiac microchambers mediated by geometric confinement
Abstract
Tissue morphogenesis and organ formation are the consequences of biochemical and biophysical cues that lead to cellular spatial patterning in development. To model such events in vitro, we use PEG-patterned substrates to geometrically confine human pluripotent stem cell colonies and spatially present mechanical stress. Modulation of the WNT/β-catenin pathway promotes spatial patterning via geometric confinement of the cell condensation process during epithelial-mesenchymal transition, forcing cells at the perimeter to express an OCT4+ annulus, which is coincident with a region of higher cell density and E-cadherin expression. The biochemical and biophysical cues synergistically induce self-organizing lineage specification and creation of a beating human cardiac microchamber confined by the pattern geometry. These highly defined human cardiac microchambers can be used to study aspects of embryonic spatial patterning, early cardiac development and drug-induced developmental toxicity.
Figures
Similar articles
-
Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.BMC Cell Biol. 2015 Sep 3;16:22. doi: 10.1186/s12860-015-0067-3. BMC Cell Biol. 2015. PMID: 26335746 Free PMC article.
-
Wnt/β-catenin-mediated signaling re-activates proliferation of matured cardiomyocytes.Stem Cell Res Ther. 2018 Dec 7;9(1):338. doi: 10.1186/s13287-018-1086-8. Stem Cell Res Ther. 2018. PMID: 30526659 Free PMC article.
-
Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2.Stem Cells Dev. 2017 May 1;26(9):678-693. doi: 10.1089/scd.2016.0226. Epub 2017 Mar 20. Stem Cells Dev. 2017. PMID: 28125926 Free PMC article.
-
Heart fields and cardiac morphogenesis.Cold Spring Harb Perspect Med. 2014 Oct 1;4(10):a015750. doi: 10.1101/cshperspect.a015750. Cold Spring Harb Perspect Med. 2014. PMID: 25274757 Free PMC article. Review.
-
Scalable Cardiac Differentiation of Pluripotent Stem Cells Using Specific Growth Factors and Small Molecules.Adv Biochem Eng Biotechnol. 2018;163:39-69. doi: 10.1007/10_2017_30. Adv Biochem Eng Biotechnol. 2018. PMID: 29071404 Review.
Cited by
-
The importance of matrix in cardiomyogenesis: Defined substrates for maturation and chamber specificity.Matrix Biol Plus. 2024 Aug 20;24:100160. doi: 10.1016/j.mbplus.2024.100160. eCollection 2024 Dec. Matrix Biol Plus. 2024. PMID: 39291079 Free PMC article.
-
Controlling Morphology and Functions of Cardiac Organoids by Two-Dimensional Geometrical Templates.Cells Tissues Organs. 2023;212(1):64-73. doi: 10.1159/000521787. Epub 2022 Jan 10. Cells Tissues Organs. 2023. PMID: 35008091 Free PMC article.
-
Synthetic embryology: controlling geometry to model early mammalian development.Curr Opin Genet Dev. 2018 Oct;52:86-91. doi: 10.1016/j.gde.2018.06.006. Epub 2018 Jun 27. Curr Opin Genet Dev. 2018. PMID: 29957587 Free PMC article. Review.
-
Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models.Front Bioeng Biotechnol. 2017 Jul 26;5:40. doi: 10.3389/fbioe.2017.00040. eCollection 2017. Front Bioeng Biotechnol. 2017. PMID: 28798911 Free PMC article. Review.
-
Biomaterials for 4D stem cell culture.Curr Opin Solid State Mater Sci. 2016 Aug;20(4):212-224. doi: 10.1016/j.cossms.2016.03.002. Epub 2016 Mar 28. Curr Opin Solid State Mater Sci. 2016. PMID: 28717344 Free PMC article.
References
-
- Thompson D.W. On Growth and Form Cambridge University Press (1917).
-
- Srivastava D. & Olson E.N. A genetic blueprint for cardiac development. Nature 407, 221–226 (2000). - PubMed
-
- Curtiss J., Halder G. & Mlodzik M. Selector and signalling molecules cooperate in organ patterning. Nat. Cell Biol. 4, E48–E51 (2002). - PubMed
-
- Bruneau B.G. The developmental genetics of congenital heart disease. Nature 451, 943–948 (2008). - PubMed
-
- Engler A.J., Sen S., Sweeney H.L. & Discher D.E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- P01 HL089707/HL/NHLBI NIH HHS/United States
- U01 HL098179/HL/NHLBI NIH HHS/United States
- R01HL096525/HL/NHLBI NIH HHS/United States
- UH3TR000487/TR/NCATS NIH HHS/United States
- UH2 TR000487/TR/NCATS NIH HHS/United States
- U01HL100406/HL/NHLBI NIH HHS/United States
- UH2TR000487/TR/NCATS NIH HHS/United States
- EB-002027/EB/NIBIB NIH HHS/United States
- U01 HL100406/HL/NHLBI NIH HHS/United States
- R01 HL108677/HL/NHLBI NIH HHS/United States
- R21EB021003/EB/NIBIB NIH HHS/United States
- UH3 TR000487/TR/NCATS NIH HHS/United States
- R01 HL096525/HL/NHLBI NIH HHS/United States
- T32 HL007544/HL/NHLBI NIH HHS/United States
- U01HL098179/HL/NHLBI NIH HHS/United States
- R21 EB021003/EB/NIBIB NIH HHS/United States
- P41 EB002027/EB/NIBIB NIH HHS/United States
- R01HL108677/HL/NHLBI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
