Ovarian Germline Stem Cells (OGSCs) and the Hippo Signaling Pathway Association with Physiological and Pathological Ovarian Aging in Mice

Cell Physiol Biochem. 2015;36(5):1712-24. doi: 10.1159/000430144.

Abstract

Background: The Hippo signaling pathway plays fundamental roles in stem cell maintenance in a variety of tissues and has thus implications for stem cell biology. Key components of this recently discovered pathway have been shown to be associated with primordial follicle activation. However, whether the Hippo signaling pathway plays a role in the development of Ovarian Germline Stem Cells (OGSCs) during physiological and pathological ovarian aging in mice is unknown.

Methods: Mice at the age of 7 days (7D), or of 2, 10, or 20 months (2M, 10M, 20M) and mice at 2M treated with TPT and CY/BUS drugs were selected as physiological and pathological ovarian aging models, respectively. Immunohistochemistry was used to assess the development of follicles, and the co-localization of genes characteristic of OGSCs with MST1, LATS2 and YAP1 was assessed by immunofluorescence, western blotting and real-time PCR methods.

Results: The Hippo signal pathway and MVH/OCT4 genes were co-expressed in the mouse ovarian cortex. The level and co-localization of LATS2, MST1, MVH, and OCT4 were significantly decreased with increased age, but YAP1 was more prevalent in the mouse ovarian cortex of 2M mice than 7D mice and was not observed in 20M mice. Furthermore, YAP1, MVH, and OCT4 were gradually decreased after TPT and CY/BUS treatment, and LATS2 mRNA and protein up-regulation persisted in TPT- and CY/BUS-treated mice. However, the expression of MST1 was lower in the TPT and CY/BUS groups compared with the control group. In addition, pYAP1 protein showed the highest expression in the ovarian cortexes of 7D mice compared with 20M mice, and the value of pYAP1/YAP1 decreased from 7D to 20M. Moreover, pYAP1 decreased in the TPT- and CY/BUS-treated groups, but the value of pYAP1/YAP1 increased in these groups.

Conclusion: Taken together, our results show that the Hippo signaling pathway is associated with the changes that take place in OGSCs during physiological and pathological ovarian aging in mice. Thus, the Hippo signaling pathway may be involved in the development schedule of OGSCs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Cellular Senescence*
  • Female
  • Germ Cells*
  • Hippo Signaling Pathway
  • Mice
  • Ovary / cytology*
  • Ovary / metabolism
  • Ovary / pathology
  • Protein Serine-Threonine Kinases / metabolism*
  • Stem Cells / cytology*
  • Stem Cells / metabolism

Substances

  • Protein Serine-Threonine Kinases