Optical coherence tomography reflects brain atrophy in multiple sclerosis: A four-year study

Ann Neurol. 2015 Nov;78(5):801-13. doi: 10.1002/ana.24487. Epub 2015 Oct 1.


Objective: The aim of this work was to determine whether atrophy of specific retinal layers and brain substructures are associated over time, in order to further validate the utility of optical coherence tomography (OCT) as an indicator of neuronal tissue damage in patients with multiple sclerosis (MS).

Methods: Cirrus high-definition OCT (including automated macular segmentation) was performed in 107 MS patients biannually (median follow-up: 46 months). Three-Tesla magnetic resonance imaging brain scans (including brain-substructure volumetrics) were performed annually. Individual-specific rates of change in retinal and brain measures (estimated with linear regression) were correlated, adjusting for age, sex, disease duration, and optic neuritis (ON) history.

Results: Rates of ganglion cell + inner plexiform layer (GCIP) and whole-brain (r = 0.45; p < 0.001), gray matter (GM; r = 0.37; p < 0.001), white matter (WM; r = 0.28; p = 0.007), and thalamic (r = 0.38; p < 0.001) atrophy were associated. GCIP and whole-brain (as well as GM and WM) atrophy rates were more strongly associated in progressive MS (r = 0.67; p < 0.001) than relapsing-remitting MS (RRMS; r = 0.33; p = 0.007). However, correlation between rates of GCIP and whole-brain (and additionally GM and WM) atrophy in RRMS increased incrementally with step-wise refinement to exclude ON effects; excluding eyes and then patients (to account for a phenotype effect), the correlation increased to 0.45 and 0.60, respectively, consistent with effect modification. In RRMS, lesion accumulation rate was associated with GCIP (r = -0.30; p = 0.02) and inner nuclear layer (r = -0.25; p = 0.04) atrophy rates.

Interpretation: Over time GCIP atrophy appears to mirror whole-brain, and particularly GM, atrophy, especially in progressive MS, thereby reflecting underlying disease progression. Our findings support OCT for clinical monitoring and as an outcome in investigative trials.

Publication types

  • Observational Study
  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • Adult
  • Aged
  • Atrophy
  • Brain / pathology*
  • Disease Progression
  • Female
  • Follow-Up Studies
  • Humans
  • Longitudinal Studies
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Multiple Sclerosis / pathology*
  • Optic Neuritis / pathology
  • Retina / pathology*
  • Retinal Ganglion Cells / pathology
  • Thalamus / pathology
  • Tomography, Optical Coherence / methods*