Observation of Λ(4)H Hyperhydrogen by Decay-Pion Spectroscopy in Electron Scattering

Phys Rev Lett. 2015 Jun 12;114(23):232501. doi: 10.1103/PhysRevLett.114.232501. Epub 2015 Jun 9.


At the Mainz Microtron MAMI, the first high-resolution pion spectroscopy from decays of strange systems was performed by electron scattering off a (9)Be target in order to study the Λ binding energy of light hypernuclei. Positively charged kaons were detected by a short-orbit spectrometer with a broad momentum acceptance at 0° forward angles with respect to the beam, efficiently tagging the production of strangeness in the target nucleus. Coincidentally, negatively charged decay pions were detected by two independent high-resolution spectrometers. About 10(3) pionic weak decays of hyperfragments and hyperons were observed. The pion momentum distribution shows a monochromatic peak at pπ≈133 MeV/c, corresponding to the unique signature for the two-body decay of hyperhydrogen Λ(4)H→(4)He+π(-), stopped inside the target. Its Λ binding energy was determined to be BΛ=2.12±0.01 (stat)±0.09 (syst)MeV with respect to the (3)H+Λ mass.