Attenuation of Magnesium Sulfate on CoCl₂-Induced Cell Death by Activating ERK1/2/MAPK and Inhibiting HIF-1α via Mitochondrial Apoptotic Signaling Suppression in a Neuronal Cell Line

Chin J Physiol. 2015 Aug 31;58(4):244-53. doi: 10.4077/CJP.2015.BAD296.

Abstract

Magnesium sulfate (MgSO₄) ameliorates hypoxia/ischemia-induced neuronal apoptosis in a rat model. This study aimed to investigate the mechanisms governing the anti-apoptotic effect of MgSO₄ on cobalt chloride (CoCl₂)-exposed NB41A3 mouse neuroblastoma cells. MgSO₄ increased the viability of NB41A3 cells treated with CoCl₂ in a dose-dependent manner. MgSO₄ treatment was shown to lead to an increase in the anti-apoptotic Bcl-2 family proteins, with a concomitant decrease in the pro-apoptotic proteins. MgSO₄ also attenuated the CoCl₂-induced disruption of mitochondrial membrane potential (ΔΨ(m)) and reduced the release of cytochrome c form the mitochondria to the cytosol. Furthermore, exposure to CoCl₂ caused activation of the hypoxia-inducible factor 1α (HIF-1α). On the other hand, MgSO₄ markedly reduced CoCl₂-induced HIF-1α activation and suppressed HIF-1α downstream protein BNIP3. MgSO₄ treatment induced ERK1/2 activation and attenuated CoCl₂-induced activation of p38 and JNK. Addition of the ERK1/2 inhibitor U0126 significantly reduced the ability of MgSO₄ to protect neurons from CoCl₂-induced mitochondrial apoptotic events. However, incubation of cultures with the p38 and JNK inhibitors did not significantly affect MgSO₄-mediated neuroprotection. MgSO₄ appears to suppress CoCl₂-induced NB41A3 cell death by activating ERK1/2/ MAPK pathways, which further modulates the role of Bcl-2 family proteins and mitochondria in NB41A3 cells. Our data suggest that MgSO₄ may act as a survival factor that preserves mitochondrial integrity and inhibits apoptotic pathways.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects*
  • Cell Line, Tumor
  • Cobalt / pharmacology*
  • Extracellular Signal-Regulated MAP Kinases / metabolism*
  • Hypoxia-Inducible Factor 1, alpha Subunit / antagonists & inhibitors*
  • Magnesium Sulfate / pharmacology*
  • Membrane Potential, Mitochondrial / drug effects
  • Mice
  • Reactive Oxygen Species / metabolism
  • Signal Transduction / drug effects*

Substances

  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Reactive Oxygen Species
  • Cobalt
  • Magnesium Sulfate
  • Extracellular Signal-Regulated MAP Kinases
  • cobaltous chloride