Single-atom electron energy loss spectroscopy of light elements
- PMID: 26228378
- PMCID: PMC4532884
- DOI: 10.1038/ncomms8943
Single-atom electron energy loss spectroscopy of light elements
Abstract
Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of electron energy loss spectroscopy using inelastically scattered electrons. In this method, we demonstrate the single-atom detection of lithium, fluorine, sodium and chlorine with near-atomic precision, which is limited by the incident probe size, signal delocalization and atomic movement in nanospace. Moreover, chemical shifts of lithium K-edge have been successfully identified with various atomic configurations in one-dimensional lithium compounds.
Figures
Similar articles
-
Towards weighing individual atoms by high-angle scattering of electrons.Ultramicroscopy. 2015 Apr;151:23-30. doi: 10.1016/j.ultramic.2014.11.031. Epub 2014 Dec 5. Ultramicroscopy. 2015. PMID: 25522869
-
Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield.Ultramicroscopy. 2016 Jan;160:239-246. doi: 10.1016/j.ultramic.2015.10.019. Epub 2015 Oct 21. Ultramicroscopy. 2016. PMID: 26550931
-
Atom-by-atom spectroscopy at graphene edge.Nature. 2010 Dec 23;468(7327):1088-90. doi: 10.1038/nature09664. Epub 2010 Dec 15. Nature. 2010. PMID: 21160475
-
Capturing the signature of single atoms with the tiny probe of a STEM.Ultramicroscopy. 2012 Dec;123:80-9. doi: 10.1016/j.ultramic.2012.04.003. Epub 2012 Apr 27. Ultramicroscopy. 2012. PMID: 22626784 Review.
-
Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.Ultramicroscopy. 2016 Mar;162:A1-A24. doi: 10.1016/j.ultramic.2015.11.012. Epub 2015 Dec 2. Ultramicroscopy. 2016. PMID: 26778606 Review.
Cited by
-
Bimetallic Single-Atom Catalysts for Water Splitting.Nanomicro Lett. 2024 Sep 25;17(1):1. doi: 10.1007/s40820-024-01505-2. Nanomicro Lett. 2024. PMID: 39317789 Free PMC article. Review.
-
Chemical Electron Microscopy (CEM) for Heterogeneous Catalysis at Nano: Recent Progress and Challenges.Research (Wash D C). 2023;6:0043. doi: 10.34133/research.0043. Epub 2023 Feb 24. Research (Wash D C). 2023. PMID: 36930759 Free PMC article. Review.
-
Identifying and manipulating single atoms with scanning transmission electron microscopy.Chem Commun (Camb). 2022 Nov 3;58(88):12274-12285. doi: 10.1039/d2cc04807h. Chem Commun (Camb). 2022. PMID: 36260089 Free PMC article. Review.
-
Two-Dimensional Ultrathin Silica Films.Chem Rev. 2022 Jul 13;122(13):11172-11246. doi: 10.1021/acs.chemrev.1c00995. Epub 2022 Jun 22. Chem Rev. 2022. PMID: 35731806 Free PMC article. Review.
-
Polar surface structure of oxide nanocrystals revealed with solid-state NMR spectroscopy.Nat Commun. 2019 Nov 28;10(1):5420. doi: 10.1038/s41467-019-13424-7. Nat Commun. 2019. PMID: 31780658 Free PMC article.
References
-
- Suenaga K. & Koshino M. Atom-by-atom spectroscopy at graphene edge. Nature 468, 1088–1090 (2010). - PubMed
-
- Suenaga K., Kobayashi H. & Koshino M. Core-level spectroscopy of point defects in single layer h-BN. Phys. Rev. Lett. 108, 075501 (2012). - PubMed
-
- Oshima Y. et al.. Direct imaging of lithium atoms in LiV2O4 by spherical aberration-corrected electron microscopy. J. Electron Microsc. 59, 457–461 (2010). - PubMed
-
- Huang R. et al.. Real-time direct observation of Li in LiCoO2 cathode material. Appl. Phys. Lett. 98, 051913 (2011).
-
- Egerton R. F., Li P. & Malac M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004). - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
