Asynchronous Rate Chaos in Spiking Neuronal Circuits

PLoS Comput Biol. 2015 Jul 31;11(7):e1004266. doi: 10.1371/journal.pcbi.1004266. eCollection 2015 Jul.

Abstract

The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI) spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology*
  • Animals
  • Biological Clocks / physiology*
  • Computer Simulation
  • Feedback, Physiological / physiology
  • Humans
  • Models, Neurological*
  • Models, Statistical
  • Nerve Net / physiology*
  • Neural Inhibition / physiology*
  • Neuronal Plasticity / physiology*
  • Nonlinear Dynamics

Grant support

This work was funded by Agence Nationale de la Recherche, DH, France-Israel Laboratory of Neuroscience, DH, and France-Israel High Council for Science and Technology, DH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.