Using DNA Barcodes to Identify Road-Killed Animals in Two Atlantic Forest Nature Reserves, Brazil

PLoS One. 2015 Aug 5;10(8):e0134877. doi: 10.1371/journal.pone.0134877. eCollection 2015.

Abstract

Road mortality is the leading source of biodiversity loss in the world, especially due to fragmentation of natural habitats and loss of wildlife. The survey of the main species victims of roadkill is of fundamental importance for the better understanding of the problem, being necessary, for this, the correct species identification. The aim of this study was to verify if DNA barcodes can be applied to identify road-killed samples that often cannot be determined morphologically. For this purpose, 222 vertebrate samples were collected in a stretch of the BR-101 highway that crosses two Discovery Coast Atlantic Forest Natural Reserves, the Sooretama Biological Reserve and the Vale Natural Reserve, in Espírito Santo, Brazil. The mitochondrial COI gene was amplified, sequenced and confronted with the BOLD database. It was possible to identify 62.16% of samples, totaling 62 different species, including Pyrrhura cruentata, Chaetomys subspinosus, Puma yagouaroundi and Leopardus wiedii considered Vulnerable in the National Official List of Species of Endangered Wildlife. The most commonly identified animals were a bat (Molossus molossus), an opossum (Didelphis aurita) and a frog (Trachycephalus mesophaeus) species. Only one reptile was identified using the technique, probably due to lack of reference sequences in BOLD. These data may contribute to a better understanding of the impact of roads on species biodiversity loss and to introduce the DNA barcode technique to road ecology scenarios.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Wild / classification
  • Animals, Wild / genetics*
  • Brazil
  • Conservation of Natural Resources / methods
  • DNA Barcoding, Taxonomic / methods*
  • Electron Transport Complex IV / genetics*
  • Forests*
  • Geography
  • Molecular Sequence Data
  • Reproducibility of Results

Substances

  • Electron Transport Complex IV

Associated data

  • GENBANK/KR005651
  • GENBANK/KR017933
  • GENBANK/KR017934
  • GENBANK/KR017935
  • GENBANK/KR017936
  • GENBANK/KR017937
  • GENBANK/KR017938
  • GENBANK/KR017939
  • GENBANK/KR017940
  • GENBANK/KR017941
  • GENBANK/KR017942
  • GENBANK/KR017943
  • GENBANK/KR017944
  • GENBANK/KR017945
  • GENBANK/KR017946
  • GENBANK/KR017947
  • GENBANK/KR017948
  • GENBANK/KR017949
  • GENBANK/KR017950
  • GENBANK/KR017951
  • GENBANK/KR017952
  • GENBANK/KR017953
  • GENBANK/KR017954
  • GENBANK/KR017955
  • GENBANK/KR017956
  • GENBANK/KR017957
  • GENBANK/KR017958
  • GENBANK/KR017959
  • GENBANK/KR017960
  • GENBANK/KT236170
  • GENBANK/KT236171
  • GENBANK/KT236172
  • GENBANK/KT236173
  • GENBANK/KT236174
  • GENBANK/KT236175
  • GENBANK/KT236176
  • GENBANK/KT236177
  • GENBANK/KT236178
  • GENBANK/KT236179
  • GENBANK/KT236180
  • GENBANK/KT236181
  • GENBANK/KT236182
  • GENBANK/KT236183
  • GENBANK/KT236184
  • GENBANK/KT236185
  • GENBANK/KT236186
  • GENBANK/KT236187
  • GENBANK/KT236188
  • GENBANK/KT236189
  • GENBANK/KT236190
  • GENBANK/KT236191
  • GENBANK/KT236192
  • GENBANK/KT236193
  • GENBANK/KT236194
  • GENBANK/KT236195
  • GENBANK/KT236196
  • GENBANK/KT236197
  • GENBANK/KT236198
  • GENBANK/KT236199
  • GENBANK/KT236200
  • GENBANK/KT236201
  • GENBANK/KT236202
  • GENBANK/KT236203
  • GENBANK/KT236204
  • GENBANK/KT236205
  • GENBANK/KT236206
  • GENBANK/KT236207
  • GENBANK/KT236208
  • GENBANK/KT236209
  • GENBANK/KT236210
  • GENBANK/KT236211
  • GENBANK/KT236212
  • GENBANK/KT236213
  • GENBANK/KT236214
  • GENBANK/KT236215
  • GENBANK/KT236216
  • GENBANK/KT236217
  • GENBANK/KT236218
  • GENBANK/KT236219
  • GENBANK/KT236220
  • GENBANK/KT236221
  • GENBANK/KT236222
  • GENBANK/KT236223
  • GENBANK/KT236224
  • GENBANK/KT236225
  • GENBANK/KT236226
  • GENBANK/KT236227
  • GENBANK/KT236228
  • GENBANK/KT236229
  • GENBANK/KT236230
  • GENBANK/KT236231
  • GENBANK/KT236232
  • GENBANK/KT236233
  • GENBANK/KT236234
  • GENBANK/KT236235
  • GENBANK/KT236236
  • GENBANK/KT236237
  • GENBANK/KT236238
  • GENBANK/KT236239
  • GENBANK/KT236240
  • GENBANK/KT236241
  • GENBANK/KT236242
  • GENBANK/KT236243
  • GENBANK/KT236244
  • GENBANK/KT236245
  • GENBANK/KT236246
  • GENBANK/KT236247
  • GENBANK/KT236248
  • GENBANK/KT236249
  • GENBANK/KT236250
  • GENBANK/KT236251
  • GENBANK/KT236252
  • GENBANK/KT236253
  • GENBANK/KT236254
  • GENBANK/KT236255
  • GENBANK/KT236256
  • GENBANK/KT236257
  • GENBANK/KT236258
  • GENBANK/KT236259
  • GENBANK/KT236260
  • GENBANK/KT236261
  • GENBANK/KT236262
  • GENBANK/KT236263
  • GENBANK/KT236264
  • GENBANK/KT236265
  • GENBANK/KT236266
  • GENBANK/KT236267
  • GENBANK/KT236268
  • GENBANK/KT236269
  • GENBANK/KT236270
  • GENBANK/KT236271
  • GENBANK/KT236272
  • GENBANK/KT236273
  • GENBANK/KT236274
  • GENBANK/KT236275
  • GENBANK/KT236276
  • GENBANK/KT236277
  • GENBANK/KT236278

Grants and funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (grant number 475862/2012-0; www.cnpq.br) and the Fundação de Amparo à Pesquisa e Inovação do Espírito Santo – FAPES (grant number 61901857/13; www.fapes.es.gov.br). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.