Genetic association between G protein-coupled receptor kinase 6/β-arrestin 2 and dopamine supersensitivity psychosis in schizophrenia

Neuropsychiatr Dis Treat. 2015 Jul 29:11:1845-51. doi: 10.2147/NDT.S86042. eCollection 2015.

Abstract

Background/aim: Dopamine supersensitivity psychosis (DSP), clinically characterized by unstable and severe psychosis or tardive dyskinesia and often categorized as treatment-resistant schizophrenia, is promoted by long-term antipsychotic treatment. An upregulation of the dopamine D2 receptor caused by antipsychotic(s) is involved in the development of DSP. The present study explored the potential roles of G protein-coupled receptor kinase 6 (GRK6) and β-arrestin 2 (ARRB2) that are involved in the trafficking of DRD2 in patients with DSP.

Methods: We conducted a genetic association study of GRK6/ARRB2 between the patients with DSP episodes [DSP(+) group: N=108] and the patients without DSP(-) episodes [DSP(-) group: N=169] from the total group of patients (N=333). Based on the patients' treatment history, a DSP episode was defined as withdrawal psychosis, developed tolerance to antipsychotic effect, and tardive dyskinesia (the remaining 56 patients were excluded due to insufficient information).

Results: The results revealed that none of the allelic or genotyping distributions of five single nucleotide polymorphisms (SNPs) of GRK6 and three SNPs of ARRB2 showed any significant difference between the DSP(+) and DSP(-) groups.

Conclusion: The results suggest that the SNP analyses of these two molecules fail to classify patients into the potential clinical subtype of DSP(+) or DSP(-) group. However, since GRK6 and ARRB2 are surely involved in dopamine D2 receptor metabolism, further studies based on prospective observations of the onset of DSP under specific antipsychotic treatments are needed.

Keywords: antipsychotic; dopamine D2 receptor; tardive dyskinesia; treatment-resistant.