Parietal and Frontal Cortex Encode Stimulus-Specific Mnemonic Representations during Visual Working Memory

Neuron. 2015 Aug 19;87(4):893-905. doi: 10.1016/j.neuron.2015.07.013. Epub 2015 Aug 6.


Working memory (WM) enables the storage and manipulation of information in an active state. WM storage has long been associated with sustained increases in activation across a network of frontal and parietal cortical regions. However, recent evidence suggests that these regions primarily encode information related to general task goals rather than feature-selective representations of specific memoranda. These goal-related representations are thought to provide top-down feedback that coordinates the representation of fine-grained details in early sensory areas. Here, we test this model using fMRI-based reconstructions of remembered visual details from region-level activation patterns. We could reconstruct high-fidelity representations of a remembered orientation based on activation patterns in occipital visual cortex and in several sub-regions of frontal and parietal cortex, independent of sustained increases in mean activation. These results challenge models of WM that postulate disjoint frontoparietal "top-down control" and posterior sensory "feature storage" networks.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain Mapping / methods*
  • Female
  • Frontal Lobe / physiology*
  • Humans
  • Magnetic Resonance Imaging / methods
  • Male
  • Memory, Short-Term / physiology*
  • Orientation / physiology*
  • Parietal Lobe / physiology*
  • Photic Stimulation / methods
  • Visual Perception / physiology*
  • Young Adult