Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Aug 14:14:109.
doi: 10.1186/s12933-015-0273-5.

The pleiotropic effects of metformin: time for prospective studies

Affiliations

The pleiotropic effects of metformin: time for prospective studies

Daniel I Bromage et al. Cardiovasc Diabetol. .

Abstract

The global prevalence of diabetes has risen to epidemic proportions and the trend is predicted to continue. The consequent burden of cardiovascular morbidity and mortality is a major public health concern and new treatments are required to mitigate the deleterious effects of cardiovascular disease in diabetic patients. Ischaemia-reperfusion injury is well known to exacerbate the harmful effects of acute myocardial infarction and subsequent therapeutic reperfusion, and several mechanical and pharmacological approaches to mitigating this injury have been investigated. Metformin, which is cheap, relatively safe and widely used in type 2 diabetes, is one such pharmacotherapy with considerable pre-clinical evidence for cardioprotective utility beyond its glucose-lowering effect. However, despite convincing basic evidence its translation to clinical application has largely been limited to studies of cardiovascular risk. There are several barriers to prospective randomized assessment in the context of acute myocardial infarction, not least the accessibility and already widespread use of metformin among patients with type 2 diabetes at high risk of cardiovascular events. In the place of class 1 evidence, well-designed prospective cohort studies of the potential pleiotropic utility of metformin in cardiovascular disease, and particularly its benefit in ischaemia-reperfusion injury, are needed. Given the availability of metformin worldwide, this is particularly true in low- and middle-income countries where the optimal therapy for acute myocardial infarction, primary percutaneous coronary intervention, may not be available, and instead patients are managed with thrombolysis. As this is less effective, metformin as an adjunct to thrombolysis (or PPCI) could represent an effective, cheap means of cardioprotection with global relevance.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Proposed cardioprotective mechanisms of metformin. It is suggested that metformin confers cardioprotection by inhibiting mitochondrial complex I and inhibiting AMP deaminase, which both increase cytosolic AMP:ATP ratio. This activates AMPK causing the phosphorylation of eNOS, an integral part of the RISK pathway. Furthermore, increased AMP:ATP facilitates the extracellular diffusion of adenosine and its subsequent activation of the RISK pathway via a G protein-coupled receptor. Metformin may also activate PI3K directly. The RISK pathway inhibits MPTP opening which mitigates the detrimental effects of calcium influx and ROS generation at reperfusion. Ado adenosine, AMP adenosine monophosphate, AMPK adenosine monophosphate-activated protein kinase, ATP adenosine triphosphate, eNOS endothelial nitric oxide synthase, ENT equilibrative nucleoside transporter; Erk, extracellular signal-regulated kinases, GPCR G protein-coupled receptor, IMP inosine monophosphate, MEK1/2 mitogen-activated protein kinase, mK ATP mitochondrial ATP-sensitive potassium channel, mPKC mitochondrial protein kinase C, MPTP mitochondrial permeability transition pore, NADH nicotinamide adenine dinucleotide, NO nitric oxide, OCT1 organic cation transporter 1, PI3K phosphoinositide 3 kinase, RISK reperfusion injury salvage kinase, ROS reactive oxygen species.

Similar articles

Cited by

References

    1. World Health Organisation (2014) Global status report on noncommunicable diseases. p xiv.http://apps.who.int/iris/bitstream/10665/148114/1/9789241564854_eng.pdf
    1. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–321. doi: 10.1016/j.diabres.2011.10.029. - DOI - PubMed
    1. Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia. 2001;44(Suppl 2):S14–S21. doi: 10.1007/PL00002934. - DOI - PubMed
    1. National Institute for Cardiovascular Outcomes Research (NICOR) (2014) Myocardial Ischaemia National Audit Project Annual Public Report April 2013–March 2014. p 19. https://www.ucl.ac.uk/nicor/audits/minap/documents/annual_reports/minap-...
    1. Gibson CM. NRMI and current treatment patterns for ST-elevation myocardial infarction. Am Heart J. 2004;148(5 Suppl):S29–S33. doi: 10.1016/j.ahj.2004.09.012. - DOI - PubMed

Publication types

MeSH terms