Burn conversion is a contributor to morbidity that currently has no quantitative measurement system. Active dynamic thermography (ADT) has recently been characterized for the early assessment of burn wounds and resolves the three-dimensional structure of materials by heat transfer analysis. As conversion is a product of physiological changes in three-dimensional structure, with subsequent modification of heat transfer properties, the authors hypothesize that ADT can specifically identify the process of burn conversion and serve as an important tool for burn care. A heated comb was used to create four contact burns separated by three interspaces on bilateral flanks of 18 rats, resulting in 144 burns and 108 interspaces. Wounds were imaged by ADT and laser Doppler imaging (LDI) pre- and post-injury through hour 36, with a subset undergoing biopsy collection. Direct analysis of thermographic and perfusion data revealed an increasing difference between burns and interspaces by ADT with increasing injury severity (P < .05), while LDI characterized the opposite. Comparison of stasis zones to burns reveals the ability of ADT to distinguish these two regions in both intermediate and deep burns at every assessment (P < .05). In addition, when wounds are grouped as converting or not converting, ADT identifies by hour 12, wounds that will convert (P < .05). LDI identifies by hour 4 wounds that will not (P < .05). This study has demonstrated that ADT can directly identify burn wound conversion, while LDI can identify nonconverting wounds. Further advancement of ADT technology has the potential to guide real-time interventional techniques.