Structured Variability in Purkinje Cell Activity during Locomotion

Neuron. 2015 Aug 19;87(4):840-52. doi: 10.1016/j.neuron.2015.08.003.


The cerebellum is a prominent vertebrate brain structure that is critically involved in sensorimotor function. During locomotion, cerebellar Purkinje cells are rhythmically active, shaping descending signals and coordinating commands from higher brain areas with the step cycle. However, the variation in this activity across steps has not been studied, and its statistical structure, afferent mechanisms, and relationship to behavior remain unknown. Here, using multi-electrode recordings in freely moving rats, we show that behavioral variables systematically influence the shape of the step-locked firing rate. This effect depends strongly on the phase of the step cycle and reveals a functional clustering of Purkinje cells. Furthermore, we find a pronounced disassociation between patterns of variability driven by the parallel and climbing fibers. These results suggest that Purkinje cell activity not only represents step phase within each cycle but also is shaped by behavior across steps, facilitating control of movement under dynamic conditions.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Action Potentials / physiology*
  • Animals
  • Locomotion / physiology*
  • Male
  • Purkinje Cells / physiology*
  • Rats
  • Rats, Long-Evans