Rapid fine conformational epitope mapping using comprehensive mutagenesis and deep sequencing
- PMID: 26296891
- PMCID: PMC4646304
- DOI: 10.1074/jbc.M115.676635
Rapid fine conformational epitope mapping using comprehensive mutagenesis and deep sequencing
Abstract
Knowledge of the fine location of neutralizing and non-neutralizing epitopes on human pathogens affords a better understanding of the structural basis of antibody efficacy, which will expedite rational design of vaccines, prophylactics, and therapeutics. However, full utilization of the wealth of information from single cell techniques and antibody repertoire sequencing awaits the development of a high throughput, inexpensive method to map the conformational epitopes for antibody-antigen interactions. Here we show such an approach that combines comprehensive mutagenesis, cell surface display, and DNA deep sequencing. We develop analytical equations to identify epitope positions and show the method effectiveness by mapping the fine epitope for different antibodies targeting TNF, pertussis toxin, and the cancer target TROP2. In all three cases, the experimentally determined conformational epitope was consistent with previous experimental datasets, confirming the reliability of the experimental pipeline. Once the comprehensive library is generated, fine conformational epitope maps can be prepared at a rate of four per day.
Keywords: Bordetella pertussis; TROP2; antibody; antibody engineering; conformational epitope mapping; epitope mapping; protein-protein interaction; tumor necrosis factor (TNF).
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Figures
Similar articles
-
Characterizing Protein-Protein Interactions Using Deep Sequencing Coupled to Yeast Surface Display.Methods Mol Biol. 2018;1764:101-121. doi: 10.1007/978-1-4939-7759-8_7. Methods Mol Biol. 2018. PMID: 29605911 Free PMC article.
-
Epitope Mapping Using Yeast Display and Next Generation Sequencing.Methods Mol Biol. 2018;1785:89-118. doi: 10.1007/978-1-4939-7841-0_7. Methods Mol Biol. 2018. PMID: 29714014
-
Epitope mapping: the first step in developing epitope-based vaccines.BioDrugs. 2007;21(3):145-56. doi: 10.2165/00063030-200721030-00002. BioDrugs. 2007. PMID: 17516710 Free PMC article. Review.
-
A combinatorial mutagenesis approach for functional epitope mapping on phage-displayed target antigen: application to antibodies against epidermal growth factor.MAbs. 2014 May-Jun;6(3):637-48. doi: 10.4161/mabs.28395. Epub 2014 Mar 3. MAbs. 2014. PMID: 24589624 Free PMC article.
-
High throughput functional epitope mapping: revisiting phage display platform to scan target antigen surface.MAbs. 2014;6(6):1368-76. doi: 10.4161/mabs.36144. MAbs. 2014. PMID: 25484050 Free PMC article. Review.
Cited by
-
Mammalian cell display with automated oligo design and library assembly allows for rapid residue level conformational epitope mapping.Commun Biol. 2024 Jul 3;7(1):805. doi: 10.1038/s42003-024-06508-8. Commun Biol. 2024. PMID: 38961245 Free PMC article.
-
Phage-DMS: A Comprehensive Method for Fine Mapping of Antibody Epitopes.iScience. 2020 Sep 29;23(10):101622. doi: 10.1016/j.isci.2020.101622. eCollection 2020 Oct 23. iScience. 2020. PMID: 33089110 Free PMC article.
-
Computational epitope mapping of class I fusion proteins using low complexity supervised learning methods.PLoS Comput Biol. 2022 Dec 7;18(12):e1010230. doi: 10.1371/journal.pcbi.1010230. eCollection 2022 Dec. PLoS Comput Biol. 2022. PMID: 36477260 Free PMC article.
-
Yeast Surface Display for Protein Engineering: Library Generation, Screening, and Affinity Maturation.Methods Mol Biol. 2022;2491:29-62. doi: 10.1007/978-1-0716-2285-8_2. Methods Mol Biol. 2022. PMID: 35482183
-
Biophysical Inference of Epistasis and the Effects of Mutations on Protein Stability and Function.Mol Biol Evol. 2018 Oct 1;35(10):2345-2354. doi: 10.1093/molbev/msy141. Mol Biol Evol. 2018. PMID: 30085303 Free PMC article.
References
-
- Throsby M., van den Brink E., Jongeneelen M., Poon L. L., Alard P., Cornelissen L., Bakker A., Cox F., van Deventer E., and Guan Y. (2008) Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PloS ONE 3, e3942. - PMC - PubMed
-
- Sui J., Hwang W. C., Perez S., Wei G., Aird D., Chen L.-M., Santelli E., Stec B., Cadwell G., Ali M., Wan H., Murakami A., Yammanuru A., Han T., Cox N. J., Bankston L. A., Donis R. O., Liddington R. C., and Marasco W. A. (2009) Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16, 265–273 - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
