Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics
- PMID: 26301482
- PMCID: PMC4761536
- DOI: 10.1016/j.bbabio.2015.08.006
Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics
Abstract
Redox potentials are a major contributor in controlling the electron transfer (ET) rates and thus regulating the ET processes in the bioenergetics. To maximize the efficiency of the ET process, one needs to master the art of tuning the redox potential, especially in metalloproteins, as they represent major classes of ET proteins. In this review, we first describe the importance of tuning the redox potential of ET centers and its role in regulating the ET in bioenergetic processes including photosynthesis and respiration. The main focus of this review is to summarize recent work in designing the ET centers, namely cupredoxins, cytochromes, and iron-sulfur proteins, and examples in design of protein networks involved these ET centers. We then discuss the factors that affect redox potentials of these ET centers including metal ion, the ligands to metal center and interactions beyond the primary ligand, especially non-covalent secondary coordination sphere interactions. We provide examples of strategies to fine-tune the redox potential using both natural and unnatural amino acids and native and nonnative cofactors. Several case studies are used to illustrate recent successes in this area. Outlooks for future endeavors are also provided. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Keywords: Cupredoxin; Cytochromes; Iron–sulfur proteins; Metalloenzymes; Non-covalent interactions; Secondary coordination sphere.
Copyright © 2015 Elsevier B.V. All rights reserved.
Figures
Similar articles
-
Design of dinuclear manganese cofactors for bacterial reaction centers.Biochim Biophys Acta. 2016 May;1857(5):539-547. doi: 10.1016/j.bbabio.2015.09.003. Epub 2015 Sep 25. Biochim Biophys Acta. 2016. PMID: 26392146 Review.
-
Structural principles for computational and de novo design of 4Fe-4S metalloproteins.Biochim Biophys Acta. 2016 May;1857(5):531-538. doi: 10.1016/j.bbabio.2015.10.001. Epub 2015 Oct 9. Biochim Biophys Acta. 2016. PMID: 26449207 Free PMC article. Review.
-
First principles design of a core bioenergetic transmembrane electron-transfer protein.Biochim Biophys Acta. 2016 May;1857(5):503-512. doi: 10.1016/j.bbabio.2015.12.002. Epub 2015 Dec 7. Biochim Biophys Acta. 2016. PMID: 26672896 Free PMC article.
-
Ru(II)-diimine functionalized metalloproteins: From electron transfer studies to light-driven biocatalysis.Biochim Biophys Acta. 2016 May;1857(5):589-597. doi: 10.1016/j.bbabio.2015.09.004. Epub 2015 Sep 25. Biochim Biophys Acta. 2016. PMID: 26392147 Free PMC article. Review.
-
Design and engineering of a man-made diffusive electron-transport protein.Biochim Biophys Acta. 2016 May;1857(5):513-521. doi: 10.1016/j.bbabio.2015.09.008. Epub 2015 Sep 28. Biochim Biophys Acta. 2016. PMID: 26423266 Free PMC article.
Cited by
-
An artificial metalloenzyme that can oxidize water photocatalytically: design, synthesis, and characterization.Chem Sci. 2024 Jan 30;15(10):3596-3609. doi: 10.1039/d3sc05870k. eCollection 2024 Mar 6. Chem Sci. 2024. PMID: 38455019 Free PMC article.
-
Fluctuation Relations to Calculate Protein Redox Potentials from Molecular Dynamics Simulations.J Chem Theory Comput. 2024 Jan 9;20(1):385-395. doi: 10.1021/acs.jctc.3c00785. Epub 2023 Dec 27. J Chem Theory Comput. 2024. PMID: 38150288 Free PMC article.
-
Mechanisms and Opportunities for Rational In Silico Design of Enzymes to Degrade Per- and Polyfluoroalkyl Substances (PFAS).J Chem Inf Model. 2023 Dec 11;63(23):7299-7319. doi: 10.1021/acs.jcim.3c01303. Epub 2023 Nov 19. J Chem Inf Model. 2023. PMID: 37981739 Free PMC article. Review.
-
Primary and Secondary Coordination Sphere Effects on the Structure and Function of S-Nitrosylating Azurin.J Am Chem Soc. 2023 Sep 20;145(37):20610-20623. doi: 10.1021/jacs.3c07399. Epub 2023 Sep 11. J Am Chem Soc. 2023. PMID: 37696009 Free PMC article.
-
Impact of weak radiofrequency and static magnetic fields on key signaling molecules, intracellular pH, membrane potential, and cell growth in HT-1080 fibrosarcoma cells.Sci Rep. 2023 Aug 30;13(1):14223. doi: 10.1038/s41598-023-41167-5. Sci Rep. 2023. PMID: 37648766 Free PMC article.
References
-
- Farver O, Pecht I. Electron transfer processes of blue copper proteins. Met Ions Biol. 1981;3:151–192.
-
- Stevens TH, Martin CT, Wang H, Brudvig GW, Scholes CP, Chan SI. The nature of copperA in cytochrome c oxidase. J Biol Chem. 1982;257:12106–12113. - PubMed
-
- Dennison C, Canters GW. The CuA site of cytochrome c oxidase. Receuil des Travaux Chimiques des Pays-Bas. 1996;115:345–351.
-
- Battistuzzi G, Borsari M, Loschi L, Righi F, Sola M. Redox Thermodynamics of Blue Copper Proteins. J Am Chem Soc. 1999;121:501–506.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
