The radiometal makes a difference. Synthesis and preliminary characterisation of DOTA-minigastrin analogue complexes with Ga, Lu and Y

Nucl Med Rev Cent East Eur. 2015;18(2):51-5. doi: 10.5603/NMR.2015.0014.


Background: The minigastrin analogue - CP04: DOTA-(DGlu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 has been developed for CCK2R targeting. This analogue can be radiolabelled with 111In or 68Ga for imaging, or with 90Y and 177Lu for therapy. However, affinity of the chelator-peptide conjugates to the cell membrane receptors may vary depending on the metal incorporated into the complex. So far, there are no such studies for the ligands of gastrin/cholecystokinin receptor CCK2R. It is supposed that the reason for the differentiation of receptor affinity to the respective receptors is in the changes of structure of chelating system and their influence on the bioactive conformations of the metal conjugated peptides. Herein, we report on the radiolabeling of CP04 with 90Y, 177Lu and 68Ga and synthesis of cold CP04 complexes with respective stable metals for further structural and physico-chemical and biological studies.

Materials and methods: From 200 to 600 MBq of 90Y, 177Lu or 68Ga were used for radiolabelling of 20 μg of CP04 dissolved in ascorbic acid solution (50 mg/mL, pH 4.5). Non-radioactive complexes with Lu and Ga were synthesized in milligram amounts starting from 0.5 mg up to 5 mg of CP04 dissolved in ascorbic acid solution (50 mg/mL, pH 4.5) when using 2-molar excess of the metal ions. Complex formation needed 5 min in microwave oven or 12 min in thermo-block at 95°C. RP-HPLC isocratic method (Kinetex 150/4.6 mm; 25% AcN/0.1% TFA, 1 mL/min) with UV/Vis and radiometric detection was developed for investigation of the radiolabelled and "cold" complexes. For LC-MS investigations, HPLC method was modified replacing TFA by formic acid.

Results and discussion: Yields of CP04 radiolabelling were greater than 90% for all three radionuclides. The HPLC method enabled identification of these radio-complexes based on comparison to their non-radioactive equivalents. In all cases, chromatograms revealed peaks that could be attributed to the metal-CP04 complexes and to impurities (including methionine oxidation). LC-MS analysis of Ga and Lu complexes revealed conformity of the observed molecular ions to the predicted formulas (m/z 2116 and 2220 Da for Ga and Lu, respectively). Different chromatographic behaviour observed for Ga-CP04 complex comparing to Lu- and Y- labelled peptide (relative retention to CP04: 1.08, 0.86 and 0.85, respectively) suggest different coordination of the metal ions. Therefore, further studies are planned using the non-radioactive complexes in order to assess their structural conformations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chemical Phenomena
  • Chemistry Techniques, Synthetic
  • Drug Stability
  • Gallium Radioisotopes / chemistry*
  • Gastrins / chemistry*
  • Heterocyclic Compounds, 1-Ring / chemistry*
  • Isotope Labeling / methods*
  • Lutetium / chemistry*
  • Yttrium Radioisotopes / chemistry*


  • Gallium Radioisotopes
  • Gastrins
  • Heterocyclic Compounds, 1-Ring
  • Yttrium Radioisotopes
  • 1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetraacetic acid
  • minigastrin
  • Lutetium