Apoptosis induction in human breast cancer (MCF-7) cells by a novel venom L-amino acid oxidase (Rusvinoxidase) is independent of its enzymatic activity and is accompanied by caspase-7 activation and reactive oxygen species production

Apoptosis. 2015 Oct;20(10):1358-72. doi: 10.1007/s10495-015-1157-6.

Abstract

We report the elucidation of a mechanism of apoptosis induction in breast cancer (MCF-7) cells by an L-amino acid oxidase (LAAO), Rusvinoxidase, purified from the venom of Daboia russelii russelii. Peptide mass fingerprinting analysis of Rusvinoxidase, an acidic monomeric glycoprotein with a mass of ~57 kDa, confirmed its identity as snake venom LAAO. The enzymatic activity of Rusvinoxidase was completely abolished after two cycles of freezing and thawing; however, its cytotoxicity toward MCF-7 cells remained unaffected. Dose- and time-dependent induction of apoptosis by Rusvinoxidase on MCF-7 cells was evident from changes in cell morphology, cell membrane integrity, shrinkage of cells and apoptotic body formation accompanied by DNA fragmentation. Rusvinoxidase induced apoptosis in MCF-7 cells by both the extrinsic (death-receptor) and intrinsic (mitochondrial) signaling pathways. The former pathway of apoptosis operated through activation of caspase-8 that subsequently activated caspase-7 but not caspase-3. Rusvinoxidase-induced intrinsic pathway of apoptosis was accompanied by a time-dependent depolarization of the mitochondrial membrane through the generation of reactive oxygen species, followed by a decrease in cellular glutathione content and catalase activity, and down-regulation of expression of anti-apoptotic proteins Bcl-XL and heat-shock proteins (HSP-90 and HSP-70). Rusvinoxidase treatment resulted in increase of the pro-apoptotic protein Bax, subsequently leading to the release of cytochrome c from mitochondria to the cytosol and activating caspase-9, which in turn stimulated effector caspase-7. Rusvinoxidase at a dose of 4 mg/kg was non-toxic in mice, indicating that it may be useful as a model for the development of peptide-based anticancer drugs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects*
  • Breast Neoplasms / drug therapy*
  • Caspase 7 / metabolism
  • Daboia*
  • Enzyme Activation
  • Female
  • Humans
  • L-Amino Acid Oxidase / metabolism
  • L-Amino Acid Oxidase / pharmacology*
  • MCF-7 Cells
  • Mice
  • Pakistan
  • Reactive Oxygen Species / metabolism*
  • Viper Venoms / metabolism
  • Viper Venoms / pharmacology*

Substances

  • Reactive Oxygen Species
  • Viper Venoms
  • L-Amino Acid Oxidase
  • rusvinoxidase protein, Daboia russelii russelii
  • Caspase 7