The cell division protein FtsZ assembles in vitro by a mechanism of cooperative association dependent on GTP, monovalent cations, and Mg(2+). We have analyzed the GTPase activity and assembly dynamics of Streptococcus pneumoniae FtsZ (SpnFtsZ). SpnFtsZ assembled in an apparently cooperative process, with a higher critical concentration than values reported for other FtsZ proteins. It sedimented in the presence of GTP as a high molecular mass polymer with a well defined size and tended to form double-stranded filaments in electron microscope preparations. GTPase activity depended on K(+) and Mg(2+) and was inhibited by Na(+). GTP hydrolysis exhibited a delay that included a lag phase followed by a GTP hydrolysis activation step, until reaction reached the GTPase rate. The lag phase was not found in polymer assembly, suggesting a transition from an initial non-GTP-hydrolyzing polymer that switches to a GTP-hydrolyzing polymer, supporting models that explain FtsZ polymer cooperativity.
Keywords: GTPase; Streptococcus; bacterial division; protein assembly; protein chemistry; protein dynamic.
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.